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Colloidal microdynamics: Pair-drag simulations of model-concentrated aggregated systems

L. E. Silbert,1,* J. R. Melrose,1 and R. C. Ball2
1Polymers & Colloids Group, Cavendish Laboratory, University of Cambridge,

Madingley Road, Cambridge CB3 0HE, United Kingdom
2Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge,

Madingley Road, Cambridge CB3 0HE, United Kingdom
~Received 23 August 1996; revised manuscript received 2 September 1997!

We report results of simulations of a model for concentrated aggregated colloidal dispersions under shear
flows. In an effort to study trends in rheology for varying colloidal interactions, we study a reduced hydrody-
namic, frame-invariant, pair-drag model in which a long-range, many-body mobility matrix is generated just
from resistance pair-drag terms that include lubrication. The model also includes depletion interactions, repul-
sive surface forces, and Brownian forces. We consider the steady-state rheology of the model which we varied
in volume fraction between 30% and 53%. We are able to fit our data to experimental results. The rheology of
the model is that of a power-law shear-thinning fluid with relative viscosity scaling with shear rate ash r

;ġ2a and an exponent close to universal over a range of particle volume fractions 0.45–0.53. We also
obtained a shear-thinning exponent that appears to be just weakly sensitive to the hydrodynamic model. The
exponenta varies from 0.7560.02 for weakly aggregating systems to 0.8660.03 in the case of strong
aggregating systems and the experimental data. As we lower the volume fraction we find a model-dependent
transition to shear banding, where the rheology is effectively lost. We also find evidence of transitions between
different shear-thinning regimes at the higher volume fractions when the particles are arranged in the familiar
strings phases.@S1063-651X~97!13212-3#

PACS number~s!: 47.50.1d, 83.50.2v

I. INTRODUCTION

Aggregated colloidal suspensions show a variety of non-
Newtonian rheological properties, such as yield stress, shear
thinning, shear thickening, thixotropy, and rheopexy@1#.
Even at moderate concentrations, aggregating suspensions
become ‘‘gel-forming’’ networks, considered to consist of
continuous or percolating networks of particle aggregates
prior to settling~sedimentation! @2#, and are widely regarded
as ‘‘colloidal gels’’ akin to polymeric systems@3#. In these
microstructural fluids, the suspended particles interact
through interparticle ~conservative!, hydrodynamic, and
Brownian forces. Under equilibrium conditions, it is the
competition between the interparticle and Brownian forces
that determines the microstructures. However, when a shear-
ing motion is introduced into the system, hydrodynamic
forces must also be considered along with the interparticle
and Brownian interactions. This highly nonequilibrium state
raises many interesting questions about the microstructural
organization under the influence of shear flows and the sub-
sequent rheology of such systems. However, theoretical
progress is hampered by the lack of insight into structural
mechanisms.

Computer modeling is seen by many to be a route for-
ward, but despite considerable effort, accurate algorithms for
modeling the flow of particles concentrated in a hydrody-
namic medium@4–7# are not yet efficient enough to allow
studies far from equilibrium on relatively large systems
across a parameter space of colloid interactions. Some au-
thors @8,9# have simply dropped hydrodynamic interactions

from their models in an attempt to gain some insight, al-
though these algorithms are often physically naive represen-
tations of true systems. The simulations presented here offer
an improvement on the nonhydrodynamic models by incor-
porating a computationally efficient, but approximate, hydro-
dynamic model that respects some, but not all, of the correct
physics of these interactions under shear flow. It includes the
leading-order terms in the mobility matrix in the limit of
concentrated systems and should therefore be seen as a
strong-coupling approximation; full details are given else-
where@10#. We emphasize that our aims at this stage are to
study trends in colloid rheology and to motivate new theory.

At lower concentrations than those of interest here, there
are many theoretical models of the shear behavior of aggre-
gates@11–15#. All these theories make untested assumptions
about the microstructural behavior of the dispersion. How-
ever, a common ingredient in most of these theories is the
idea that the stress in an aggregated system is carried through
an open network that consists of the whole aggregate. The
subsequent rheological behavior comes from the gradual
breakdown in length scales over which the stress is carried,
for example, breakup of fractal networks; see Ref.@14#.
These assumptions can be effectively assessed by computer
modeling. Our recent studies on the microstructural evolu-
tion of stress-bearing networks in concentrated, aggregating
colloids @16# suggest that within the bulk there are dominant
stress pathways consisting of rodlike particle structures. The
resulting rheological behavior can then be described in terms
of the rupture and reformation of these clusters@17#.

Most of the simulations to date have involved models
without hydrodynamic interactions employing the free-
draining approximation@9,13,18–20#. At this level, Melrose
and Heyes@9# performed simulations on flowing aggregates*Electronic address: 1s10009@phy.cam.ac.uk
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where they predicted gross structural changes under shear
involving layering. In the models without hydrodynamic in-
teractions, close particles do not feel divergent viscous inter-
actions under relative motion. Shear is applied by coupling
the particles to a background affinely shearing fluid which
they do not disturb. These one-particle drag terms determine
that the model is not Galilean invariant, and so-called mean-
field hydrodynamics@8# as formulated does nothing to cor-
rect this failing. Limited studies have been made on the
stresses of static aggregates by shear flow that do include
hydrodynamic interactions@21–23# via low terms in moment
expansions.

Hydrodynamic interactions must be important in real sys-
tems. Several methods have been proposed for accurately
computing hydrodynamic interactions@4–7# and research
continues. Moment expansions are@5# O(N3) in the number
of particlesN, to compute the motion at one time step, al-
though anO(N2) method without Brownian forces has been
proposed@4#. None of these methods has yet been shown to
be computationally feasible for large systems with colloid
interactions. The lattice Boltzmann@7# method has not been
implemented with the moving boundary conditions required
to impose shear flow and would need fine meshes to catch
the divergent interactions between particles. Less accurate
methods have been studied@24,25#, the most extensively ap-
plied being that of Bossis and Brady@24#. However, the
method isO(N3), and results for dynamic simulations of
only small systems in three dimensions~3D! have recently
been published. The method of Ref.@25# fails to handle close
particle surfaces above 40% volume fraction and has not yet
been developed with colloidal interactions.

We argue that the lowest-order approximation that retains
much of the physics of hydrodynamic interactions is in the
strong-coupling limit of concentrated systems—aframe-
invariant pair-drag modelwith divergent lubrication interac-
tions.

The equations of motion are given by a balance of forces/
torques calculated as a sum over all nearest-neighbor pairs of
hydrodynamic, conservative~colloid! forces, and random
Brownian forces:

2R–V1FC1FB50, ~1!

whereR, F, and V denote a 6N36N drag matrix and 6N
force and velocity vectors, respectively. We deal first with
the need for frame invariance. The hydrodynamic forces/
torques on the particles can be viewed in matrix form asU
5M–FH or, equivalently,FH5R–U, where, in principle,U
is a vector of fluid and particle velocities. In the absence of
an explicit fluid velocity field in the simulation, we argue
that it is physically incorrect to break frame~Galilean! in-
variance in the particle velocities; we therefore build the in-
teraction model out of Galilean-invariant dissipative interac-
tions, that is, the matrixR has the symmetry

R–~V1Uconst!5R–V, ~2!

whereUconst is a constant velocity field or a rigid rotation.
The frame-invariant formulation implicitly assumes that in
the problem of interest, the average fluid flow field is the
same as the average particle velocity field, so such a formu-
lation therefore cannot model many problems such as sedi-
mentation. For a shear fieldG we rewrite~1! in the form

2R–„V2V0…1FC1FB2~R–V0!50, ~3!

whereV0 are a set of velocities defined at the particle centers
by G with Lees-Edwards@26# ~i.e., shear periodic! boundary
conditions. By imposing periodic boundary conditions on the
velocity differenceV2V0, we thus impose overall shear glo-
bally on our sample without locally constraining the flow.

We now discuss the long-range nature of hydrodynamics
in a concentrated system and argue that a long-range mobil-
ity matrix can be formed from pair, near-field resistance
terms. It is not generally recognized that one must carefully
distinguish between the long-range nature ofM and the
much shorter range ofR. ConsiderM: elements of this can
be interpreted in terms of the following thought experiment.
Apply a unit force to one particle and measure the corre-
sponding particle velocities under conditions in which they
are force-free. Approximating the suspension as a fluid of
viscosityhT leads us to estimate the translational elements of
M as

M i j '1/~hTr i j ! except M i i '1/~hTd!, ~4!

wherer i j is the center-to-center separation of particlesi and
j , andd is a particle diameter. The key features ofM are that
it falls off as a slow power of distance and all elements are
scaled by the same amplitudehT .

The thought experiment for the elements ofR is to give
one particle unit velocity while holding all the others fixed,
then measuring the forces on the particles. In concentrated
systems, the near-neighbor~NN! and diagonal terms are
dominated by lubrication effects and diverge at small inter-
particle gaps as

Ri j '
2h0d2

~r i j 2d!
for r i j 'd and Rii >2( RNN , ~5!

whereas the longer-range elements ofR can be estimated by
analogy with a porous medium and give

Ri j '
2h0d4

r i j
3 , r i j @d ~6!

~this can be seen from the Green’s-function solution of the
Brinkman equation and by theory including many-body in-
teractions!. The long-range part ofR falls off as a much
steeper power than forM and, moreover, the divergence with
close interparticle gaps enters into the diagonal and nearest-
neighbor terms but not the long-range terms.

For concentrated systems we find it compelling to exploit
the dominance in the resistance matrix of the nearest-
neighbor and diagonal terms~for which the dominant
squeeze modes diverge as the interparticle gap and at that
level are pairwise additive!, over the longer-range terms,
which have nondiverging amplitude and~compared toM !
relatively rapid falloff with distance. InvertingR to obtain
M , it is evident in concentrated systems, as the gaps become
small, that the leading behavior of all the mobility elements
comes exclusively from the nearest neighbors and diagonal
terms ofR. In our earlier discussion ofM @cf. Eq. ~4!#, this
leading behavior, proportional to the interparticle gaps, is
hidden in the factorshT

21.
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The algorithm below identifies nearest neighbors and
forms R pairwise out of terms including the divergent parts
found in the lubrication approximation. Inversion of the
sparse matrixR is performed by iterative techniques. As has
often been stated, hydrodynamic simulations need to prop-
erly include the many-body and long-range nature ofM , and
the approximation at high concentrations includes the
leading-order terms to this. However, it is an inaccurate ap-
proximation to the full hydrodynamic matrices, since it ig-
nores localN-body effects inR itself in which the flows
within the narrow gaps are coupled to the flows in the local
pore space around the particle. Indeed, relative tangential~or
shearing! motion has a coefficient diverging only as
ln@d/(rij2d)# and although we include this in the computa-
tions, it is, in practice, not much more significant than the
more distant elements ofR, which we neglect.

Other workers are reporting pair-drag models@27# that
include additional terms that break Galilean invariance. To
be clear, we will refer to the model used here as aframe-
invariant, pair-dragmodel.

We compare our simulation studies with recent experi-
mental results on relatively well controlled weakly aggre-
gated systems@28,29#. In particular, Buscall, McGowan, and
Morton-Jones@28# carried out work on depletion-flocculated
systems where the colloid particles had a thermodynamic
volume fraction of 47%, through the combination of the hy-
drodynamic volume fraction of 40% plus the presence of a
polymer-coated surface. Aggregation is induced through the
addition of a nonadsorbing polymer into solution. The result-
ing osmotic imbalance arising from the exclusion of the
polymer particles from a region around close-approaching
colloid particles then leads to an effective attractive-well po-
tential interaction, which depends on the size ratio of the two
species and the concentration of the polymer particles. The
resulting experimental attractive-well depths were estimated
to lie between22.5kBT and225kBT. However, the colloid
particles are stabilized from coagulation in the deep primary
minimum at very close contact~van der Waals minimum,
Umin,2100kBT!, through the inclusion of the surface poly-
mer coat.

There are many ways to induce particle aggregation@30#,
but in an attempt to model depletion interactions, in our
simulations we approximate the aggregating potential as that
proposed by Asakura and Oosawa@31#. In the simulations,
these weak aggregating forces provide an attractive interac-
tion of the order of 210kBT. In an attempt to model
polymer-coated spheres, we include a steep repulsive spring
force at the surface of our particles. This spring force effec-
tively mimics the osmotic part of the polymer coat. These
latter forces are neglected in most theories, but actually turn
out to play a significant role in the simulations. However, all
other aspects of this layer and interactions with the polymer
species in solution are ignored. In particular, the viscous in-
teractions due to the drainage of solvent through the polymer
layer are neglected here.

There are several recent publications containing details of
the simulation method, both carried out at the Rouse level
@8,32# and those which include detailed hydrodynamic inter-
actions@10,33#. Full and explicit details of our algorithm are
presented elsewhere@10#, so only a brief overview of the

technique of the present simulations is presented in the next
section. Section III focuses on the results obtained from the
simulation studies.

II. SIMULATION METHOD

We consider time scales long with respect to the viscous
momentum relaxation time of the suspension so that we treat
the particles at the Langevin-Smoluchowski level and the
fluid by the creeping-flow equations. Stick boundary condi-
tions are imposed on the fluid at the particle surfaces. ForN
such particles, immersed in a Newtonian fluid with viscosity
m and densityr, the equations of motion are described by the
coupled N-body Langevin equation expressing force bal-
ance:

05FH1FP1FB. ~7!

The 6N force/torque vectors represent~i! the hydrodynamic
forcesFH exerted on the particles due to their motion relative
to the fluid,~ii ! the interparticle forcesFP, and~iii ! the ran-
dom Brownian forcesFB.

A. Interparticle forces

The interparticle interactions include the contribution
from the depletion interaction whose attractive forcef A is
approximated by@31#

f A~r i j !52
QkBT

d
@L22~r i j /d!2#H~Ld2r i j !, ~8!

whereL511a/d, with d being the diameter of the colloid
particle,a twice the radius of gyration of the added polymer
species at a volume fractionfp , r i j the separation between
the i th and j th particles, andH(x) a unit step function.

The interaction strengthQ depends on the volume frac-
tion of polymerfp and the size ratio of this added polymer
to the colloid particlea/d:

Q5
3fp

2~a/d!3 . ~9!

For a typical ratio ofa/d, and a sensible value forfp , Q
ranges between 1000 and 10 000.

We use linear springs as the crudest model of conserva-
tive, repulsive forces between the adsorbed polymer coats.
The repulsive forcef R between spheresi and j separated by
r i j is

f R~r i j !52ni j

kBT

d
$F02~F0 /dc!~r i j 2d!%

for ~r i j 2d!,dc, ~10!

50 for ~r i j 2d!.dc.

The Hookean spring coat thicknessdc/2 sets how much the
thermodynamicsize of the particle exceeds thehydrody-
namic size of the particle. The termF0 sets the maximal
force the spring can supply and is set to 104 for all simula-
tions.
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Figure 1 shows the interaction potential arising from the
combination of the depletion interaction together with the
repulsive surface forces. In the simulations reported below,
all distances are measured in terms of the particle diameter
d, which, for convenience, is set to unity. The coat thickness
parameterdc50.01d, fp50.70, and the size ratioa/d
50.1; consequently, forQ;1000, the particles at rest are
aggregated in well depths of order210kBT. Two systems at
higherfp are also presented~Fig. 7!.

B. Hydrodynamic interactions and equations of motion

The hydrodynamic model, as mentioned earlier introduces
a resistance tensorR, a sparse matrix, acting between nearest
neighbors such that the hydrodynamic force is given by@see
Eq. ~2!#

FH52R–V. ~11!

TheV are the 6N velocities and angular velocities, andR is
actually a 6N36N particle-configuration-dependent matrix.

For the nearest-neighbor hydrodynamics drag we use the
leading singular terms in the lubrication approximation, the
most divergent being the squeeze mode. The other modes,
arising from the shear and transverse motion of neighbors,
are logarithmically divergent with respect to the gap. We
also include terms due to higher orders in the gap expansion
which are also logarithmically divergent@6,34#. To leading
order in the intersurface gaps, thesqueeze-modeforce f i

H on
particle i is given by

f i
H52(

j
~3pmd2/8hi j !$~vi2vj !•ni j %ni j , ~12!

wherem is the viscosity of the solvent,d being the particle
diameter, the sum is over nearest-neighbor particlesj , hi j is
the gap between the surfaces,ni j is the unit vector along the
line of centersi to j , andvi , vj are the particle velocities.

For many of the results below, we will study models with
just the squeeze interactions. This approximation is justified
as we find that the scaling relation between stress and shear
rate for the rheology with just squeeze lubrication interac-
tions is relatively insensitive to the hydrodynamic model
used in the simulations—whether we include higher-order

terms or other hydrodynamical modes, the scaling exponent
remains approximately constant.

Random forces and torquesFB, when included, obey the
fluctuation-dissipation theorem:^FBFB&52kBTR. Including
Brownian forces in the equations of motion is computation-
ally expensive~e.g., fivefold for the typical data here!. Solv-
ing for the particle motion, it is necessary to numerically
solve Eq.~7! for the particle velocitiesV. Thus Eq.~7! be-
comes@cf. Eq. ~1!#

2R–V1FP1FB50, ~13!

which generates long-range correlations in the particle mo-
tion through the inversion ofR, which has the computational
merit of being sparse and is, in principle, anO(N2) opera-
tion, although we find that the practical scaling to achieve
fixed accuracy is more likeN1.5 @10#. The flow is driven by
Lees-Edwards boundary conditions@26# on systems in spa-
tially periodic boundaries. The computational geometry is
shown in Fig. 2, where the flow (x), gradient (y), and vor-
ticity (z) directions~axes! are also defined.

In simulations of sheared aggregates when Brownian
forces are neglected, the physics is solely determined by the
competition between the colloid interactions and the shear
forces. We introduce a dimensionless shear rateW, which is
the single parameter determining the physics at a particular
volume fraction. It is defined as the ratio of a shear force in
the solvent in the absence of particles to the maximum at-
tractive force of a particle-particle bondf max(r) at a separa-
tion r 5d:

W5
Fshear

f max~d!
5

md2ġ

QkBT/d
. ~14!

Here the dimensionless shear rateW is defined with respect
to the solvent viscositym, d is the particle diameter, andQ
has already been defined in Eq.~9!. The choice of the defi-
nition of W is convenient in the following data plots. If

FIG. 1. The equilibrium interaction potential between particle
pairs experiencing the attractive depletion forces with repulsive
forces approximated by a Hookean spring surface of thickness
0.005 particle diameters. Polymer concentration,fp50.7, polymer/
colloid size ratioa/d50.1 (Q51050.0). FIG. 2. The computational geometry of a single computational

box for the simple shear-flow simulation, with the flow (x), gradi-
ent (y), and vorticity (z) directions~axes! defined as shown. The
imposed shear rate is performed by Lees-Edwards boundary condi-
tions across the top surface of the periodic boundaries.
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Brownian forces are included,W is related to the Peclet
number, Pe5md3ġ/kBT through the relation

W5Pe/Q, ~15!

and all of the following rheology plots will be given in terms
of the relative viscosityh r of the bulk to that of the solvent
and the dimensionless shear rateW. Since our studies are
always at largeQ (Q.1000), we are always in the phase-
separating region. InW, we only vary the ratio of the shear
forces to the colloidal forces. We do not vary the ratio of the
Brownian forces to the colloidal forces, hence as we lower
W, although Brownian forces will certainly become increas-
ingly important relative to shear, the system remains in the
phase-separating region in which colloid forces dominate
over Brownian forces; see Fig. 6.

It must be noted that Eq.~14! involves only a crude esti-
mate of the shear forces on a particle in the bulk suspension.
The parameterW85h rW will provide a more accurate esti-
mation of the ratio of the bulk suspension forces to the ag-
gregating forces, buth r has to be computed from the simu-
lation.

C. Computation of stress

The relative viscosityh r , defined as the ratio of the sus-
pension viscosityh to that of the solvent viscositym, can be
calculated from the bulk stress of the suspension, defined by
a sum over all nearest-neighbor interacting pairs:

s5
1

V (
i j

f i j r i j , ~16!

where r i j is the edge vector andV is the volume of the
computational box, andf i j is the sum of the hydrodynamic
@Eq. ~12!, for example# and intercolloid particle pair forces
(8)1(10). The Brownian contribution to the stress tensor is
properly computed elsewhere@10,35#. Note that the shear-
gradient-flow element ofs is the relative viscosity.

From the above definition of the relative viscosity and
from Eq. ~16! we obtain, for the total relative viscosity,

h r511h r
H1h r

P1h r
B ~17!

where the hydrodynamic, interparticle~sum of repulsive and
attractive terms!, and Brownian contributions to the relative
viscosity are denoted ash r

H , h r
P (5h r

PR1h r
PA), andh r

B re-
spectively, and the unity contribution is that of the solvent.

D. Simulation strategy

The results presented here are for monodisperse spheres,
whose initial random configurations were generated by
Monte Carlo procedures. We formed configurations at rest
without aggregating forces, and then turned on the shear and
the aggregating forces together. As we will see below, Fig. 7,
our simulations lie in the second half of the shear thinning
region where much of any rest structure is lost. This proce-
dure in the simulation is equivalent to those experiments of
Hunter and Frayne@36# in which all structure was destroyed
by high-flow treatments prior to low-shear studies. A number
of simulations were carried out for each volume fraction

studied encompassing a wide range of~dimensionless! shear
rates (1022,WQ,103). For simulations carried out with-
out Brownian forces, the time step was 0.002 in units where
the shear rate and the particle diameter are both set equal to
unity and we used a first-order time-step algorithm for mov-
ing particles. The typical number of time steps for runs were
100 000–200 000, with times to reach the steady state
20 000–50 000 steps. In the cases of simulations that in-
cluded Brownian motion, we had to switch to a predictor-
corrector algorithm with a variable time step ranging from
1026 to 1023, and run for up to 106 time steps.

III. RESULTS

There are two regimes of volume fraction to be consid-
ered. For volume fractions of 45% and above our systems
exhibit shear-thinning behavior, which we are able to study
and characterize in terms of shear stress and relative viscos-
ity as a function of shear rate. We are able to examine the
effects of volume fraction~Fig. 5!, hydrodynamic force
model ~Fig. 6!, and system size~Fig. 4! on the rheology of
these systems. Over a large range of shear rates these sys-
tems obey that of a power-law, shear-thinning fluid~Figs. 5
and 6!. At high shear rates we find evidence of a transition
from the thinning regime~Figs. 5 and 9!. We also investigate
the dominant contributions to the stress tensor. We angularly
decompose the stress contributions with respect to particle
‘‘bond’’ angle ~Fig. 12!.

By contrast, simulations at 40% volume fraction undergo
shear banding and we effectively suffer a loss of rheology
~Fig. 10!. We present snapshots taken of particle configura-
tions that show the structural organization that occurs when
shear banding takes place~Fig. 9!.

A. Rheology

We compare the simulation rheology data at 45% volume
fraction, in Fig. 3, between Brownian spheres with aggregat-
ing forces to that of Brownian spheres without aggregating

FIG. 3. Rheology at 45% volume fraction: a direct comparison
between an aggregating system of Brownian spheres, which in-
cludes depletion interactions, with a system of nonaggregating,
Brownian spheres, which has no aggregating forces. The aggregat-
ing system experiences an enhanced viscous response over the non-
aggregating system.
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forces. It is clear that the aggregating system experiences a
large viscous enhancement over the nonaggregating system.
In fact, their respective viscosities differ by an order of mag-
nitude over the shear-thinning region. The presence of the
aggregating forces results in extended structures within the
bulk and an enhanced resistance to flow. Thus, the resultant
behavior is an increase in viscosity over that of a non-phase-
separating system.

Note that the system with just Brownian forces first shear
thin and then thicken at higher shear rates. Due to the stiff
coats, thickening behavior is not seen in our model aggregat-
ing system until we reach much larger shear rates, and then
only to a very minor degree.

We show several rheology plots~Figs. 4–6! pertaining to
several parameter changes in the simulations: volume frac-
tion, hydrodynamic interactive models, and system size
~number of particles and computational box size!. In Fig. 4
the rheology plots at particle volume fraction 50% are
shown. Figure 4~a! compares viscosity values for several
system sizes,N550, 200, 700 particles per unit cell, whereas
Fig. 4~b! displays the contributions to the total viscosity~for
the system containing 200 particles!.

The phase-separating systems experience an interaction
potential-well depth of29kBT due to the depletion forces,
and are sheared until the steady-state regime is achieved over
a wide range of shear rates. The total relative viscosity

matches qualitatively experimental curves@28#: there is shear
thinning over this range ofW, with the high shear relative
viscosity h` being reached at the end of the shear-thinning
curve. We only see shear thickening with this strength of
aggregating force at the very highest shear rates~at 50%,
W51000/Q!. The curve has an effective plateau over a wide
range of~high! shear rates. It is clear that system-size effects
become increasingly pronounced as we lower the number of
particles per unit cell. This can be explained due to limiting
factors affecting the size of dominant, stress-bearing clusters
@17#.

The individual components contributing to the total rela-
tive viscosity, Fig. 4~b!, demonstrate that the dominant con-
tribution to the curve is that of the Hookean term~repulsive
interparticle force contributionh r

PR!. In contrast, the com-
mon ingredient in most theories is the stretching and break-
ing of elastic bonds; while this is certainly occurring, the
results here suggest that over a range of concentrations stud-
ied ~45–53 %!, the dominant positive contribution to the vis-
cosity comes from the compression of particle surfaces
and/or coats. The depletion term~attractive interparticle
force contributionh r

PA! contributes negatively overall to the
viscosity, approaching zero as the end of the shear-thinning
curve is reached. The squeeze term~hydrodynamic contribu-
tion h r

H!, however, changes sign from low to higher shear
rates and then continues to rise gradually with increasing
shear rate. The overall contributions from the squeeze and
the depletion terms are negligible in comparison with the
Hookean contribution throughout the shear-thinning region.
At first sight, this is quite puzzling, as there is clearly an
effect from the aggregating forces on the viscosity values—
compare the aggregation viscosity data with that of the non-
aggregating systems’ results in Fig. 3. This will be further
discussed below. The shear thickening is due to an increas-
ing hydrodynamic contribution at the higher shear rates.

Figure 5 examines the variation of viscosity with volume
fraction. Again, these simulations were carried out with the
hydrodynamic interactions approximated by the squeeze
term only and without Brownian forces. The aggregation po-
tential has its minimum at roughly29kBT, and the compu-

FIG. 4. Rheology at 50% volume fraction where the hydrody-
namics is approximated by the squeeze lubrication terms andUmin

529kBT: system size effects are investigated~a! for N550, 200,
and 700 particles in a simulation cell. For the 200-particle system
~b!, contributions to the total viscosity are from the Hookeanh r

PR,
depletionh r

PA, and squeezeh r
H forces, respectively.

FIG. 5. The dependence ofh r , as a function ofW, on f(0.45
<f<0.53) at the squeeze level of approximation for 200 particles.
The inset shows how the scaled data collapses, resulting in the
shear-thinning exponenta50.7560.02.
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tational box contains 200 particles in all cases. Here we
study three volume fractions,f50.45, 0.50, and 0.53. As
expected, the viscosity increases with increasing colloid con-
centration and each curve approaches a different value for
h` , although this fact is not resolved on the scale of Fig. 5.
For each volume fraction, each curve can be scaled with
respect to its high-shear-rate viscosity. The inset shows the
scaled data, for all three volume fractions, on a log-log plot.

We would anticipate that the full rheology curve might
obey a Hershel-Buckely constitutive relation, but we do not
shear at low enough rates to see the first Newtonian plateau.
In the regime studied, the data obeys a Sisko@37# constitu-
tive relation. When the viscosity is reduced according to this
relation, the whole data set, for this range in volume fraction,
collapses onto one curve~inset of Fig. 5!. The shear-thinning
exponent is calculated to bea50.7560.02. This is indica-
tive of a power-law fluid, with relative viscosity related to
shear rate likeh r;ġ20.75. Thus we conclude that our sys-
tems behave as power-law, shear-thinning fluids withuniver-
sal behavior over this range of volume fraction. The change
in slope noticeable forf50.53 ~far right of inset! coincides
with the ordering of particles into the string phase at these
shear rates. See Sec. III B and Fig. 9.

We now test whether this behavior is independent~within
the scope of the model! of the details of the hydrodynamic
interactions included. This includes studies of aggregated
systems where the hydrodynamics is approximated by only
the squeeze terms, squeeze terms and rotational hydrody-
namical modes, and finally squeeze and rotation hydrody-
namicsand Brownian forces. Figure 6 presents the rheology
curves for these systems.

Again we see the expected occurrence of shear thinning
and a leveling off at high shear rates as before. In comparing
the effects of the details of the hydrodynamic model, we find
that the inclusion of the rotation terms in the near-field ap-

proximation results in slightly higher computed viscosities
~10–20 % increase over that of the squeeze-only simula-
tions!. These additional dissipative terms will lend additional
variations in the local structures within the bulk and it is not
unreasonable to expect slight variations in the viscous re-
sponse of the system. The direct Brownian contribution to
the viscosity is positive. However, at low shear rates in the
regime where Brownian forces are non-negligible, the over-
all effect of the Brownian term is to lower the computed
viscosities through the indirect effect it has on the viscosity
contributions of the other forces, particularly the dominant
Hookean term. The effect is to lower their computed values
compared with those simulations that neglect Brownian
forces. Physically, we reason that this is due to the effect
Brownian forces have on the kinetics of the particle struc-
tures in the system. As mentioned above, aggregated systems
under shear gain structural rigidity due to the extended par-
ticle networks that form as a consequence of the attractive
forces between the particles. However, the effect of includ-
ing Brownian forces is to disrupt these particle structures and
enhance the rupture of the networks under shear, thus low-
ering the viscosity.

We see that from the scaled log-log plot, these variations
in the model again collapse onto one curve. A fit of this line
gives a value fora50.7860.04. In general, we do expect
the shear-thinning exponent to be sensitive to the model de-
tails @17#, but within the scope of these studies the exponent
appears to vary only within the margin of error.

We now pursue a direct quantitative comparison with the
well controlled experimental work carried out by Buscall,
McGowan, and Morton-Jones@28#. The experimental curve
is for a system where the aggregating well depth was esti-
mated to be218kBT @28#, and Fig. 7 shows simulation-data
fits to this curve. We simulate systems withweakaggregat-
ing interaction potentials,Umin529kBT (Q51050.0),Umin
5218kBT (Q53000.0), and also strong aggregating inter-
action potentials,Umin5268kBT (Q57500.0). We see that
with our simple model, the simulation only fits the experi-
mental data in the limit of very strong aggregating forces
(Q57500.0) which for the depletion potential is unphysi-

FIG. 6. h r as a function ofW at f50.45 (Q51050.0). The
comparison is made between different hydrodynamic models. The
squeeze-only model incorporates hydrodynamic interactions that act
between particles whose relative velocities are directed along their
line of centers. The squeeze and rotation model incorporates the
squeeze terms as well as those lubrication interactions arising from
the transverse motion of neighboring particles. Finally, the squeeze,
rotation, and Brownian motion model includes the hydrodynamic
modes as above with the inclusion of Brownian forces. The inset
shows that the scaling betweenh r and W is approximately un-
changed with hydrodynamic model.

FIG. 7. Comparison ofh r for concentrated aggregating suspen-
sions determined by simulation, with varying interaction well
depths~open symbols!, with well controlled experimental results by
Buscall, McGowan, and Morton-Jones@28# with an estimated well
depth of222kBT ~solid line!. There is agreement only at the very
deepest simulation well depth (Q57500).
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cally large—we will discuss this failing below. We note that
there is, however, agreement between the simulation and ex-
periment in the shear-thinning exponent,aexpt50.8760.01
compared withasimulation50.8660.03. At this high potential,
the shear-thinning exponent is altered.

A normal stress-differences plot is shown in Fig. 8. This
data is taken from a system at 50% volume fraction where
the hydrodynamics is modeled on the squeeze interactions
and an aggregating well depth of29kBT. The two normal
stress differences,N1 andN2 , are defined as@1#

N15sxx2syy , ~18a!

N25syy2szz, ~18b!

where the shear flow imposed is in thex direction with gra-
dient along they direction. Initially the two dimensionless
normal stress differences stay close to zero. It is questionable
whether this is because there is no definable structure over
this range of shear rate or because there exist isotropic struc-
tures in the flow. At intermediate shear ratesW51/Q, both
N1 and N2 become slightly negative. At higher shear rates,
the normal stress differences become markedly more nega-
tive, coincident with the initial formation of the string ar-
rangement at this shear rate.N1 then recovers and becomes
positive. This last effect is due to the gradual melting of the
string phase at the highest shear rates. The interparticle gaps
begin to collapse and logarithmic shear thickening is seen.
The generic shape of this curve is indicative of the change in
the microstructure as the particles suffer increasing shear
stresses.

B. Microstructure

1. Strings and bands

We now proceed to qualitatively investigate the micro-
structure under several flow conditions and shear rates. In
line with the preceding subsection, Fig. 9 shows snapshots of
particle configurations taken at 50% volume fraction, the
same systems studied in Fig. 4. These systems contain 200

particles in a computational box. The structure looks homo-
geneous, in Fig. 9~a!, until high shear rates are approached
when the string phase is reached. These qualitative features
suggest that the ordering of particles is not responsible for
the shear-thinning effect. Figure 9~a! is taken halfway down
the shear-thinning curve, whereas 9b! corresponds to a point
on the right side of the rheology curve from Fig. 4. In the
string phase, the particles flow in ‘‘tubes’’ aligned parallel to
the imposed flow direction as in Fig. 9~b!. The overall ar-
rangement of these tubes is hexagonal.

At lower volume fractions, below 45%, there is a drastic
change in the behavior of the model suspensions, effectively
a loss of constitutive rheology. For the lower volume frac-
tions studied here, 30–40 %, the systems tend to exhibit
shear banding. An example of a banded configuration of 700
particles at shear rateW55/Q is shown in Fig. 10~a!; as the
shear rate is increased, the banded configuration is torn apart
by the flow as shown in Fig. 10~b! at W5100/Q. Banding
phenomena such as this are extremely interesting facets of
complex fluids under flow. Others have found this kind of
behavior in simulations of pressure-driven flows of hard-
sphere suspensions@38#. Figure 11 shows the stress–shear-
rate curve for the shear-banding system that follows qualita-
tively previously calculated curves@39#. The inset gives the
typical velocity profile across the computational box for a
banded system. Here the velocity profile for Fig. 10~a! is
shown.

FIG. 8. Variation of the two dimensionless normal stress differ-
encesN1 andN2 with shear rate, for 200 particles atf50.50. They
both remain close to zero until high shear rates are reached. As the
string phase is approached, bothN1 andN2 dip, but as the strings
begin to melt and the particle gaps collapse,N1 becomes positive.

FIG. 9. Typical microstructural snapshots, taken looking down
the flow direction, for systems at 50% volume fraction with 200
particles (Q51050.0).~a! For W,Wstring (W51.0/Q) the appear-
ance is of a homogeneous distribution of particles with no obvious
ordering~particles drawn at half size for clarity!. ~b! Above a cer-
tain shear rateWstring (W5250.0/Q), the particles flow in string
formation ~particles drawn at full size!.

FIG. 10. Snapshots looking down the flow direction where the
particles are drawn at half size at 40% for~a! a banded configura-
tion of 700 particles at intermediate shear rates (W55.0/Q); ~b!
200 particles at high shear rates, where the banding has been broken
up by the flow (W5100.0/Q).
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2. Angular decomposition of the stress tensor

Unlike many models, our particles are given a strong re-
pulsive force on their surfaces which we found to make a
dominant contribution to the shear stress. On the face of it,
the attractive forces make a small contribution; yet, as the
stresses are greatly enhanced over the case without the ag-
gregating forces, this cannot in detail be the case. In this
section we further analyze the different contributions to the
stress to understand this dilemma. In Fig. 12, we plot the
distribution of shear stress tensor per pair of interacting par-
ticles analyzed with respect to the orientation of the particle
pair and the contributing interaction. For each interacting
pair over many configurations, we projected the particle-
center–to–particle-center vector onto the shear-gradient flow
plane and resolved data according to the angle formed be-
tween the projected vector and the shear-gradient axis, the
angle of 0° being parallel to the shear-gradient axis~see Fig.
2!. The contributions to the stress tensor, as defined in Eq.
~16!, are shown, namely, the Hookean repulsive term, the
depletion term, and thesqueezehydrodynamics term. What
we find, in Fig. 12, is that the directions along which the
Hookean and depletion contributions are largest are the
shear-compressionaland the shear-extensionaldirections, re-
spectively. The Hookean term contributes highlypositively

to the viscosity along thecompressionaldirection, but nega-
tively along the extensional direction. However, their angular
integral gives an overall dominant positive contribution to
the viscosity, as shown in Fig. 4~b!. In contrast, while the
magnitude of the attractive contributions at each angle are
individually of the same order of magnitude as the repulsive
component and their signs are opposite, their angular integral
is close to unity. The hydrodynamic squeeze force contrib-
utes both positively and negatively in both the extensional
and compressional directions. This is possible because the
squeeze interaction is dependent on the relative velocities of
the particle pair. Overall, however, the squeeze force contrib-
utes positively to the total viscosity.

IV. SUMMARY AND DISCUSSION

We must emphasize that due to the reduced hydrody-
namic interactions, the model may fail to represent well the
physics of the real system. However, it is clear that the con-
servative colloid interactions dominate the stress, so the in-
accurate estimates of the hydrodynamic contributions may
not be significant in themselves. The neglect of fluid pump-
ing in the general pore space around the particles is likely to
be significant for aggregate deformations, but we assume this
is not important at the concentrations studied. Of course, the
true hydrodynamics may give qualitatively different particle
flows.

Nevertheless, we do gain some insight from the model.
We have seen how the inclusion of an aggregating potential
greatly enhances the viscosity of a suspension compared
with that of a nonaggregating system. It has been shown that
for these concentrated systems there exists a regime of ap-
proximate universal power-law shear-thinning behavior over
the range of volume fraction 0.45<f<0.53 for weak aggre-
gation potentials with exponents close to those of experi-
ment. We note that these exponents vary only very slightly
across different varieties of the model, in particular across
what must be a significant qualitative change in the particle
motions: turning the shear modes and particle rotation on and
off. This is all, at least,suggestive that the missing hydrody-
namic features will not alter these exponents. The exponents
do, however, change for more strongly aggregating poten-
tials.

The model failed to quantitatively predict the experiment
unless unrealistically high potentials are introduced. This
may be due to the missing hydrodynamic terms. However,
this would require an order-of-magnitude-larger hydrody-
namic contribution than that in the current model—we doubt
that this is reasonable: if we estimate the full hydrodynamic
contributions from that for Brownian hard spheres at the vol-
ume fractions and flow conditions of interest, this only in-
creases the small hydrodynamic contribution in the results
above by some 20–30 %. There is another important feature
neglected in the model: the experimental particles have a
polymer coat on their surfaces, and the aggregating forces
determine that the particles will have these coats in contact.
Contacting coats will greatly enhance the local viscous inter-
actions between spheres@40#. We have made preliminary
calculations which show that the viscosity values of the ex-
periments can be computed with realistic potentials in the

FIG. 11. Behavior of the stress with shear rate at 40% volume
fraction where shear banding takes place over intermediate shear
rates. The stress is nonmonotonic. The velocity profile, in units
where the shear rate and particle diameter are both set to unity,
across the box~bottom to top is left to right on the axis! for Fig.
10~a!.

FIG. 12. Decomposition of the viscosity component of the stress
tensor with respect to~w.r.t.! particle bond angle, with 0° being
parallel to the shear-gradient axis. The contributions to the stress
are the squeeze, Hookean, and depletion terms. The compressional
and the extensional directions are seen to be dominant.
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range of the polymer coats and we will report on this in the
near future@41#. A second reason may be that the real system
feels the stronger van der Waals attraction, but evidence of a
degree of irreversible aggregation on shear was not reported
in the experiments of Ref.@28#.

The model showed shear banding in systems at the lower
volume fractions studied,f<0.40. In such systems the stress
is shown to be nonmonotonic with increasing shear rate. At
rest our systems are phase separating; this is therefore a
shear-induced orientation of thermodynamically driven sepa-
ration rather than a shear-induced banding of a stable ther-
modynamic system. This may be a false prediction for a real
colloid system because it is clear that it will be sensitive to
the full hydrodynamics we have excluded. Since we approxi-
mate the hydrodynamic interactions between particle pairs as
a pair drag, the gross separations that occur with shear band-
ing call into question the validity of the model, and indeed
we do find that the occurrence of shear banding is dependent
on the details of the model. In particular, the inclusion of
Brownian forces at 40% volume fraction with Brownian
forces ‘‘switched on,’’ the systemsdo not shear band@Fig.
13~a!#; however, Figure 13~b! shows a system at 30%with
Brownian forces switched on, and here we do see evidence
of shear banding. Evidently, as we decrease the volume frac-
tion there is an increased sensitivity to shear banding. From
the theoretical point of view, a model showing shear banding
is interestingper se. Shear banding has been studied, in a
theoretical context, for polymers and wormlike micelles at
high shear rates@39#. Symmetry suggests that bands may
form in steady states normal to either the gradient direction
or the vorticity direction. The orientation of shear banding in
the model here~normal to the gradient direction! is not that
found for free-draining models@9# ~normal to the vorticity
axis! at intermediate shear rates with the same potentials.
This suggests that the orientation requires global ap-

plication of the shear field—through true Lees-Edwards
boundary conditions as above, and that it is sensitive to arti-
ficial coupling to a background affine flow field as in the
free-draining model.

Understanding the nature of concentrated aggregating sys-
tems under shear has been tackled here. We provide impetus
for further work, including a theoretical challenge to eluci-
date the microstructural behavior of such colloidal systems
@16,17#, the role of surfaces@41#, and shear-banding effects.
Models far closer to physical systems than previous works
@9,14,20# have been simulated, to a certain degree, showing
behavior close to universal. More complete hydrodynamics
and more realistic surface models are needed before compre-
hensive predictions can be made.
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