
Southern Illinois University Carbondale
OpenSIUC

Conference Proceedings Department of Electrical and Computer
Engineering

2008

Bounding Worst-Case Response Time for Tasks
With Non-Preemptive Regions
Harini Ramaprasad
Southern Illinois University Carbondale, harinir@siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/ece_confs
Published in Ramaprasad, H., & Mueller, F. (2008). Bounding worst-case response time for tasks
with non-preemptive regions. IEEE Real-Time and Embedded Technology and Applications
Symposium, 2008. RTAS '08, 58 - 67. doi: 10.1109/RTAS.2008.18 ©2008 IEEE. Personal use of this
material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in other works must be obtained from the
IEEE. This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and constraints invoked by each
author's copyright. In most cases, these works may not be reposted without the explicit permission
of the copyright holder.

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at OpenSIUC. It has been accepted
for inclusion in Conference Proceedings by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Ramaprasad, Harini, "Bounding Worst-Case Response Time for Tasks With Non-Preemptive Regions" (2008). Conference Proceedings.
Paper 2.
http://opensiuc.lib.siu.edu/ece_confs/2

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs/2?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

Bounding Worst-Case Response Time for Tasks With Non-Preemptive Regions ∗

Harini Ramaprasad, Frank Mueller

Dept. of Computer Science, Center for Efficient, Secure and Reliable Computing

North Carolina State University

Raleigh, NC 27695-8206, mueller@cs.ncsu.edu

Abstract

Real-time schedulability theory requires a priori knowl-

edge of the worst-case execution time (WCET) of every task

in the system. Fundamental to the calculation of WCET is

a scheduling policy that determines priorities among tasks.

Such policies can be non-preemptive or preemptive. While

the former reduces analysis complexity and overhead in

implementation, the latter provides increased flexibility in

terms of schedulability for higher utilizations of arbitrary

task sets. In practice, tasks often have non-preemptive re-

gions but are otherwise scheduled preemptively. To bound

the WCET of tasks, architectural features have to be con-

sidered in the context of a scheduling scheme. In particular,

preemption affects caches, which can be modeled by bound-

ing the cache-related preemption delay (CRPD) of a task.

In this paper, we propose a framework that provides

safe and tight bounds of the data-cache related preemption

delay (D-CRPD), the WCET and the worst-case response

times, not just for homogeneous tasks under fully preemp-

tive or fully non-preemptive systems, but for tasks with a

non-preemptive region. By retaining the option of preemp-

tion where legal, task sets become schedulable that might

otherwise not be. Yet, by requiring a region within a task to

be non-preemptive, correctness is ensured in terms of arbi-

tration of access to shared resources. Experimental results

confirm an increase in schedulability of a task set with non-

preemptive regions over an equivalent task set where only

those tasks with non-preemptive regions are scheduled non-

preemptively altogether. Quantitative results further indi-

cate that D-CRPD bounds and response-time bounds com-

parable to task sets with fully non-preemptive tasks can be

retained in the presence of short non-preemptive regions.

To the best of our knowledge, this is the first framework

that performs D-CRPD calculations in a system for tasks

with a non-preemptive region.

Instead, we consider a range of possible execution times

bounded by the best and worst-case execution times of the

task. Hence, if a higher-priority task is released when a

lower-priority task is already in execution, we cannot give

an exact point of execution where the lower-priority task is

guaranteed to be at the time. Thus, there could arise a situ-

ation where the lower-priority task could be inside its non-

preemptive region but is not guaranteed to be.

In our work, we consider a periodic real-time task model

with period equal to the deadline of a task. The notation

used in the remainder of this paper is as follows. A task Ti

has characteristics represented by the 7 tuple (Φi, Pi, Ci, ci,

Bi, Ri, ∆j,i). Here, Φi is the phase, Pi is the period (equal

to deadline), Ci is the worst-case execution time, ci is the

best-case execution time, Bi is the blocking time and Ri

is the response time of the task. ∆j,i is the preemption de-

lay inflicted on the task due to a higher priority task Tj . Ji,j

represents the jth instance (job) of task Ti.

The rest of this paper is organized as follows. Section

2 discusses related work. Section 3 gives an overview of

prior work on completely preemptive analysis. Section 4

discusses our methodology and Section 5 presents experi-

mental results of our analysis. We summarize the contribu-

tions of our work in Section 6.

2. Related Work

Recently, there has been considerable research in the

area of data cache analysis for real-time systems. Several

methods characterize data cache behavior with respect to a

single task. Recently, some analytical methods for charac-

terizing data cache behavior were proposed [8, 6, 5]. In prior

work [13], we extended the Cache Miss Equations frame-

work by Ghosh et al. [8] to produce exact data cache refer-

ence patterns.

Several techniques have been proposed to analyze tasks

and calculate preemption delay in multi-task, preemptive

environments. Lee et al. proposed and enhanced a method

to calculate an upper bound for cache-related preemption

delay (CRPD) in a real-time system [10, 11]. They used

cache states at basic block boundaries and data flow anal-

ysis on the control-flow graph of a task to analyze cache be-

havior and calculate preemption delays.

The work by Lee et al. was enhanced by Staschulat et

al. [16, 18]. They build a complete framework for response

time analysis of tasks. Their focus is on instruction caches

rather than data caches. Consideration of data caches is

fundamentally different from consideration of instruction

caches because the actual memory addresses accessed by

the same reference in multiple iterations may be different

in the case of data accesses. Due to this fact, the method-

ology used to analyze instruction caches is not suitable for

analyzing data caches. In prior work [14, 15], we propose

a framework following similar steps to calculate worst-case

response time as the work by Staschulat et al. but using a

significantly different methodology.

More recently, Staschulat et al. proposed a framework

to calculate WCET of tasks [17]. This framework considers

both input-independent and input-dependent accesses and

calculates a tight bound of the effect of input-dependent

accesses on input-independent ones. When unpredictable

data references exist, any reused data cache contents are as-

sumed to be replaced, forcing them to assume that the en-

tire data cache is replaced in case of arrays larger than the

data cache size. In our work, we only focus on predictable

(input-independent) data cache accesses. Furthermore, we

need not make any assumptions about array sizes with re-

spect to data cache size.

In other related work, Ju et al. propose a method to ex-

tend CRPD calculations using abstract cache states to dy-

namic scheduling policies [9]. Once again, this work fo-

cuses on instruction caches. Our handling of data caches

differs significantly.

There have been several pieces of work that provide

schedulability analysis and tests for non-preemptive sys-

tems [7]. However, their fundamental assumption is that ev-

ery task is completely non-preemptive. They do not allow

any task to be partially or fully preemptive. This assump-

tion simplifies analysis greatly but decreases schedulability

of task sets. In order to increase schedulability, yet achieve

lower analysis complexity, methods were proposed to ”de-

fer” preemptions to known points in time by splitting a job

into several small sub-jobs and allowing preemptions only

at the end of a sub-job [3, 4, 12]. Recent work by Bril et al.

demonstrates flaws in this method [2, 1].

3. Prior Work

In previous work, we presented a framework that stati-

cally analyzes tasks in a multi-task preemptive environment

and produces safe and tight worst-case response time esti-

mates for tasks [15]. When a task is preempted, some data

that it had loaded into the data cache may potentially be

evicted from cache by higher-priority tasks. Hence, on re-

sumption of execution, it incurs additional delay to bring

the evicted data back into the data cache.

In order to incorporate the effects of preemption of a task

by a higher-priority task, we perform three steps: (1) calcu-

late n, the maximum number of preemptions for a task; (2)

identify the worst-case placement of these preemptions in

the iteration space of the preempted task; and (3) calculate

the delay incurred by the task due to a specific preemption.

Our analysis presented a framework that calculated a

safe and tight estimate of the maximum number and the

placement of preemptions for a task by eliminating infea-

sible preemption points. A preemption point is infeasible

for a certain task if the task has not started at all before the

point or if the task has already completed execution before

595959

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

the point. We used both the best and the worst-case execu-

tion times of higher priority tasks to help tighten the actual

preemption delay at every identified preemption point.

Our method showed significant improvements over a

prior method proposed by Staschulat et al. [16, 18] and

over theoretical bounds for the maximum number of pre-

emptions. We also showed that, when preemption delay is

accounted for, the critical instant for a task set does not nec-

essarily occur when all tasks in the task set are released si-

multaneously as is generally assumed.

4. Methodology

Section 3 briefly discusses prior work in which we pro-

pose a method to calculate the worst-case response time

of a task in a multi-task preemptive hard real-time system

[15]. In that work, the basic assumption is that a task may

be preempted at any point during its execution by a task

with higher priority. Hence, we are unable to consider task

sets with tasks that contain a non-preemptive region (NPR)

within them. Our current work aims at proposing a method-

ology that allows such tasks.

In the work presented here, we assume that every task

has at most one NPR during its execution. Conceptually, our

framework can deal with tasks that have multiple NPRs dur-

ing their execution, a feature to be incorporated in the im-

plementation in the future. However, this feature increases

the complexity of the analysis as a function of the num-

ber of non-preemptive regions. As part of future work, we

intend to develop a more efficient method to handle tasks

with multiple non-preemptive regions.

A NPR is represented by the first and last points of the

range of consecutive iteration points during which a partic-

ular task may not be interrupted. Every task is hence effec-

tively divided into three regions with the middle one rep-

resenting the NPR. The static timing analyzer described in

prior work [15] is enhanced to calculate the worst-case and

best-case execution times of these three regions based on

the start and end iteration points of the NPR.

In our prior work [15], whenever an instance of a task is

released, it is placed in a service queue and the scheduler

is invoked. The scheduler chooses the task with the high-

est priority at the current time, preempting any lower prior-

ity task that might be executing at the time. However, in our

new system, a task with higher priority may be required to

wait if a lower-priority task is executing in its NPR. In or-

der to calculate the worst-case response time for every task,

we need to consider several possible scenarios.

Let us suppose that a task T1 is released at time t. At

time t + x, a task T0, with a higher priority than T1 is re-

leased. At time t + x, there are three possible cases:

1. T1 has finished executing its first region and started ex-

ecuting its NPR in both best and worst cases;

2. T1 has not finished executing its first region in either

case or has already finished its NPR and entered its

third region in both cases; or

3. T1 has started executing its NPR in the best-case, but

not in the worst-case.

Cases 1 and 2 are straightforward. In case 1, T0 has to wait

until T1 finishes executing its NPR. In the best case, this

time is equal to the best-case remaining execution time of

T1’s NPR. In the worst-case, it is equal to the worst-case re-

maining execution time of task T1’s NPR. In case 2, T1 gets

preempted and T0 starts to execute immediately.

In case 3, it is not certain whether T1 has started exe-

cuting its NPR or not. Hence, for each task, we calculate

the best and worst possible scenario for that particular task

in order to determine its worst-case response time. For T0,

the worst case is to assume that T1 has already started exe-

cuting its NPR and add the worst-case remaining execution

time of T1’s NPR to the response time of T0. On the other

hand, the best case for T0 is to assume that T1 has not yet

started executing its NPR and, hence, may be preempted.

The scenario is reversed for T1. Its best case is to assume

that it has already started executing its NPR and, hence, is

not preempted. Its worst case is to assume that it gets pre-

empted by T0 and add the associated preemption delay to

its remaining execution time. By considering parallel exe-

cution scenarios for each task, we can come up with safe

response time estimates.

Currently, our framework assumes that, when a task is

executing in its NPR, it cannot be preempted by any task.

However, this is a matter of policy. The framework could

easily be extended to support resource access protocols,

such as the Priority Ceiling or Stack Resource Protocols,

which strive to limit resource access conflicts. This change

would be reflected in the handling of the JobRelease event

shown in Figure 4.

4.1. Illustrative Examples

We now provide an illustrative example of our method-

ology. Consider the task set whose characteristics are spec-

ified in Table 1. The first column shows the task name. The

second and third columns show the phase and period (equal

to the deadline) of the each task. Let us assume that the

Rate Monotonic (RM) scheduling policy is used for this

task set and, hence, that the task with the shortest period

has the highest priority. The fourth and fifth columns show

the WCETs and BCETs of each of the three regions of each

task.

For ease of understanding, let us also evaluate what hap-

pens if all three regions of every task are fully preemp-

tive. Figure 1 shows the best and worst-case timelines below

and above the horizontal time axis respectively. The arrows

show release points of the three tasks. The lightly shaded

rectangles represent preemptive execution regions of tasks.

606060

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

T0

T1

50454035302520151050

WORST CASE

BEST CASE

T2

T2

T1

T0

Figure 1. Best and Worst-Case Scenarios for Task Set 1 with no NPR

T0

T1

T2

50454035302520151050

WORST CASE

BEST CASE

T2

T0

T1

Figure 2. Best and Worst-Case Scenarios for Task Set 1 with NPR

Let us now add a non-preemptive region to task T2, as in-

dicated in Table 1. Figure 2 shows the timeline for this sit-

uation. Here, the black rectangles represent non-preemptive

regions of execution. For the sake of comparison, the sec-

ond region of task T2 is shown as a black rectangle in Fig-

ure 1 although it is fully preemptive in that example.

In Figure 2, we observe that some execution regions

overlap. This is because, at every release point, if there is

some task that could be executing in its NPR but is not guar-

anteed to be, we consider best and worst case scenarios for

that task and for the task released. In reality, only one of the

scenarios takes place and there is no simultaneous execu-

tion of multiple tasks.

Task Phase Period WCET BCET

= deadline (r1/r2/r3) (r1/r2/r3)

T0 10 20 5/0/0 3/0/0

T1 15 50 7/0/0 5/0/0

T2 0 200 10/14/6 7/9/4

Table 1. Task Set Characteristics - Task Set 1

[RM policy → T0 has highest priority]

Due to space constraints, we shall not examine the en-

tire timeline in detail. Instead, let us focus on three por-

tions of the timeline shown. These portions will help ex-

plain the basic concept behind our methodology.Let us con-

sider all the events that would occur at time 10. Job J0,0 is

released. In the case of a fully preemptive system (Figure

1), since J0,0 has higher priority, it is scheduled immedi-

ately, preempting J2,0. However, in the case where J2,0 has

a NPR (Figure 2), the situation is more complicated. Here,

we need to consider two possibilities. The best case for J0,0

is that it is scheduled immediately since there is a chance

that J2,0 has not yet started executing its NPR. It is sched-

uled to finish region 1 at time 13. On the other hand, since

there is a chance that J2,0 has started its NPR, J0,0 has to

wait for at most 14 units of time (worst-case remaining ex-

ecution time of J2,0’s NPR) and is scheduled to start only

at time 24. The best case for J2,0 is that it continues exe-

cuting its NPR. However, in the worst case, since there is

a chance that it has not started its NPR, it gets preempted

by J0,0 and it now re-scheduled to start its NPR at time 15
(adding the WCET of J0,0). However, due to the release of

another higher-priority job, namely, J1,0, at time 15, J2,0

gets re-scheduled once again to start at time 22 (adding the

WCET of J1,0).

Let us now move forward in the timeline to time 22. In

616161

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

Figure 1, this is the time at which J2,0 starts executing its

second region in the worst case. Similarly, in Figure 2, this

is the time at which J2,0 starts executing its NPR in the

worst case. It is scheduled to finish this region at time 36.

At time 24, J0,0 starts executing region 1 in its worst case.

It is scheduled to finish at time 29.

Now, consider the events that occur at time 30. Job J0,1

is released. In the fully preemptive system (Figure 1), J0,1

gets scheduled immediately since it has a higher priority,

preempting J2,0 in the worst case. In case of Figure 2, we

see that, in the best case, J0,1 starts executing region 1 right

away and is scheduled to finish at time 33. However, in the

worst case, since J2,0 is guaranteed to have started its NPR,

J0,1 has to wait until J2,0 completes its NPR and is, hence,

scheduled at time 36.

The worst case for J1,0 occurs when execution starts at

time 29. J0,1 is released at 30 and preempts J1,0 once again

for the duration of the WCET of J0,1. Note that J1,0 need

not wait for the completion of the NPR of J2,0. (It has al-

ready done so in the worst case.) Every job needs to wait at

most once for a lower-priority task in its NPR.

The analysis proceeds in a similar fashion up to the hy-

perperiod of the task set, namely 200. In this example, for

the sake of simplicity, preemption delay calculations are not

shown. Delay at every resumption point is assumed to be

zero. These calculations are in Section 4.3.

4.2. Analysis Algorithm

An algorithm briefly describing our methodology is

shown in Figure 4. Our system is built on an event hi-

erarchy. Every event has a handler which performs all

operations necessary on the occurrence of the particu-

lar event. We have several event types, each with a pri-

ority, time of occurrence and information about the task

and job that the event corresponds to. The events are or-

dered by time, and upon ties, by priority based on the type

of event. The various events in our system, in order of pri-

ority, are BCEndExec, WCEndExec, DeadlineCheck,

JobRelease, BCStartExec, WCStartExec and Preemp-

tionDelayPhaseEnd. The algorithm in Figure 4 describes

the actions that take place when a certain event is trig-

gered. In the algorithm, we describe the events in an order

that follows the flow of the logic rather than based on pri-

ority.

The basic flow of operations in our analysis is as fol-

lows. Stand-alone WCETs and BCETs are calculated for

each region of each task. JobRelease and Deadline check

events are pre-created based on task periods and inserted

into a global event list. Events in the event list are handled

one at a time until there are no more events. The basic life-

cycle of a job is described below. Upon release of a job, we

evaluate when that job gets scheduled if possible and deter-

mine whether any job that is currently executing gets pre-

BCStartExec Event BCEndExec Event

WCEndExec EventWCStartExec Event

JobRelease Event

PreempDelayPhaseEnd Event

DeadlineCheckEvent

Figure 3. Creation Dependencies among
Event Types

empted due to this release. This triggers a B/WCStartExec

event which signify the start of execution of the current re-

gion of a job. These events in turn schedule B/WCEndExec

events or PreemptionDelayPhaseEnd events as the case may

be. Finally, a DeadlineCheck is triggered and is responsible

for checking if a certain job missed its deadline.

The creation of dependencies between event types are

represented by the state-transition diagram shown in Figure

3. An arrow from one event type to another indicates that

the handler of the first event type may create an event of the

second type. Events that do not have a creator in the dia-

gram are created at the beginning outside any of the event

types.

4.3. Preemption Delay Calculation

Preemption delay at every identified preemption point is

calculated in a manner consistent with our earlier work [15].

At every preemption point, we calculate the best-case and

worst-case execution times that have been available for a

task for its execution. We provide these values to the static

timing analyzer and obtain the earliest and latest iteration

points reachable for each of these times. We then consider

the highest delay in this range of iteration points as given by

the access chain weights for those points. In our past work,

we simply added this delay to the remaining worst-case ex-

ecution time of the task and assumed that, on resumption,

execution continues from the iteration where it had left off.

However, this is imprecise since we do not know at what

points the preemption delay is actually incurred during the

execution of the task. Hence, for future preemption points,

determination of the iteration range where the task is sup-

posed to be when it is preempted is not guaranteed.

In order to solve the above problem and provide safe esti-

mates of the worst-case preemption delay at every point, we

devised the following solution. When a task is preempted,

we calculate the delay as indicated above. When the task

later resumes execution, it enters a preemption delay phase

for a time equal to the calculated delay. In this phase, the

task prefetches all data cache items that contribute to the de-

lay. Once done, the task resumes normal execution. If a task

gets preempted during its preemption delay phase, it pes-

simistically starts the same preemption delay phase all over

again once it resumes execution. This new phase ensures

626262

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

bc

queue, wc service queue : queues of

released jobs that have not yet completed

event list : list of ordered events

current time, curr job : time and job of current event

JobRelease event: Release of new task instance.

if (event queue is empty) {
schedule StartExec event for curr job at current time

} else {
if (curr job has highest priority) {

Best case: schedule StartExec event for curr job

Worst case: check currently executing job’s NPR status

schedule curr job’s StartExec event accordingly

reschedule start of executing job if necessary

} else {
insert curr job into event queue according to priority

} }
insert curr job into b/wc service queue

B/WCStartExec event : Start execution of current region.

set status of curr job to IN SERVICE in b/wc service queue

if (curr job is in PreemptionDelay phase) {
schedule PreemptionDelayPhaseEnd event for curr job

} else {
schedule B/WCEndExec event for curr job

}

B/WCEndExec event : End execution of current region.

remove curr job from b/wc service queue

update b/wc remaining time of current job

if (curr job has another region) {
schedule B/WCStartExec event for next region if possible

insert curr job into b/wc service queue

} else if (b/wc service queue has more jobs in it)) {
schedule B/WCStartExec event of next READY job

}
DeadlineCheck event : Perform deadline check.

if (curr job misses deadline) release its structures

PreemptDelayPhaseEnd event : End preemption delay phase

schedule WCStartExec event for curr job

Main Algorithm : Starting point of analysis.

for every task in the task set {
create JobRelease and DeadlineCheck events for all jobs

}
while (events in event list) {

get highest priority event and handle it based on event type

}

Figure 4. Algorithm for NPR-Aware Calculation of WCET w/ Delay

that all future delay calculations are accurate.

As we can see from above, calculation of a tight bound of

the preemption delay requires us to identify the range of it-

eration points where a task may be executing when it is pre-

empted. In order to identify this range, relative phasing of

jobs is required. Furthermore, no assumption can be made

for the phasing of tasks that would result in the critical in-

stant for the task set. Due to these reasons, we perform our

analysis on a per-job basis rather than a per-task basis. Since

our analysis is a static, offline one, we believe the complex-

ity is acceptable. However, by using a mathematical formu-

lation for our analysis (the derivation of which is part of on-

going work) and by assuming maximum possible preemp-

tion delay at every identified preemption point (thus elim-

inating the need to identify ranges of iteration points), it

is possible to reduce the complexity, yet yield a more pes-

simistic bound.

5. Experimental Results

For our experiments, we constructed several task sets us-

ing benchmarks from the DSPStone benchmark suite, con-

sistent with earlier work [15]. These task sets have base uti-

lizations of 0.5, 0.6, 0.7 and 0.8. For each of these utiliza-

tions, we construct task sets with 2, 4, 6 and 8 tasks. For a

utilization of 0.8, we also construct a task set with 10 tasks.

In all our experiments, we use a 4KB, direct-mapped data

cache with a hit penalty of 1 cycle and a miss penalty of

100 cycles. The stand-alone WCETs and BCETs of the var-

ious benchmarks are depicted in Table 2. The prefixed num-

bers in some of the benchmarks indicate the number of it-

erations. In all benchmarks, with the exceptions of matrix1

and dot-product, the number of iterations is 100 in cases

where there is no prefix.

In our first set of experiments, we perform response time

analysis using the method presented in this paper to calcu-

late the number of preemptions and the worst-case preemp-

tion delay. Due to the fact that the benchmarks used in our

experiments do not already have a NPR, we simply choose

an iteration range from the valid iteration range of a particu-

lar task and mark it as being non-preemptive. Table 3 shows

execution times of each region as determined by the tim-

ing analyzer based on the chosen iteration ranges for a sub-

ID Name WCET BCET ID Name WCET BCET

1 convolution 7491 7491 15 matrix1 59896 54015

2 200convolution 14191 14191 16 fir 9537 9537

3 300convolution 20891 20891 17 500fir 43937 43937

4 500convolution 34291 34291 18 600fir 54837 52537

5 600convolution 45291 40991 19 700fir 65937 61137

6 700convolution 55491 47691 20 800fir 77037 69737

7 800convolution 66191 54391 21 900fir 88137 78337

8 900convolution 76391 61091 22 1000fir 99237 86937

9 1000convolution 87091 67791 23 lms 14536 14536

10 n-real-updates 16738 16738 24 600lms 89636 79536

11 300n-real-updates 56538 47338 25 700lms 112636 92536

12 400n-real-updates 92238 62638 26 800lms 135636 105536

13 500n-real-updates 127538 77938 27 900lms 158636 118536

14 dot-product 750 750 28 1000lms 181636 131536

Table 2. Stand-Alone WCETs and BCETs of

DSPStone Benchmarks

636363

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

Region 1 Region 2 (NPR) Region 3

WCET / BCET WCET / BCET WCET / BCET

5 39371 / 38271 5084 / 2184 836 / 536

6 39371 / 38971 10924 / 6024 5196 / 2696

7 46771 / 44471 14224 / 7224 5196 / 2696

8 52371 / 48771 18824 / 9624 5196 / 2696

9 61571 / 55471 15424 / 7224 10096 / 5096

11 33494 / 31194 5337 / 3737 17707 / 12407

12 52294 / 43194 9647 / 4847 30297 / 14597

13 68444 / 53344 12987 / 5587 46107 / 19007

15 28912 / 26172 22400 / 20760 8584 / 7083

17 32302 / 32302 9045 / 9045 2590 / 2590

18 45802 / 45402 5845 / 4545 3190 / 2590

19 58652 / 55352 5845 / 4545 1440 / 1240

20 56502 / 53602 11545 / 9045 8990 / 7090

21 69352 / 63552 11545 / 9045 7240 / 5740

22 70152 / 64052 17245 / 13545 11840 / 9340

24 47756 / 45956 4649 / 3549 37231 / 30031

26 66506 / 60406 5239 / 3939 63891 / 41191

27 59256 / 54956 20639 / 15639 78741 / 47941

Table 3. Characteristics of Regions of Tasks

with NPR

set of our benchmarks. Since we only have a fixed set of

benchmarks, we sometimes use the same benchmark with

and without NPRs in different task sets. The length of a

task’s NPR as a portion of its total execution time ranges

from 4% to 37% in both the worst and the best cases.

The characteristics of task sets with base utilization 0.5

and 0.8 are shown in Table 4. The characteristics and re-

sults for utilizations 0.6 and 0.7 are omitted due to space

constraints. The 1st column shows the tasks used in each

task set. We use the IDs assigned to benchmarks in Table 2

to identify the tasks. If a task is chosen to have a NPR in

a certain task set, we append the letter N to its ID to indi-

cate this fact. In this case, the WCETs and BCETs for the

task are as shown in Table 3. Otherwise, they are as indi-

cated in Table 2. The 2nd column shows the phases of the

tasks and the 3rd column shows the periods (equal to the

deadlines) of tasks. The phases of the tasks are chosen in a

way to demonstrate interesting features of our analysis.

Results obtained for task sets in the above set of exper-

iments are shown in Figures 5 and 6 for base utilizations

of 0.5 and 0.8, respectively. Each graph shows the results

of analysis of the same task sets using both the static Rate

Monotonic (RM) scheduling policy and the dynamic Earli-

est Deadline First (EDF) scheduling policy. For each utiliza-

tion, we have a separate graph for the maximum number of

preemptions, the WCET with preemption delay and the re-

sponse time. These values form the y-axes in the graphs. In

each case, we indicate the average values of these parame-

ters over all jobs of a task. On the x-axis for each graph, we

show the tasks used in each experiment. Tasks are grouped

by task-set and by task-id starting from 0 within task sets.

Tasks 2 4 6 8

U = 0.5

IDs 16, 19N 1,

15N,

18N,

22

23, 3, 6, 11N,

19, 26

2, 3, 4, 11, 15N,

18, 7, 27

Phases 4K, 0 1K, 0,

10K, 0

32K, 32K, 32K,

0, 0, 0

0, 0, 0, 0, 0, 0,

0, 0

Periods 50K, 200K 50K,

400K,

500K,

1000K

400K, 500K,

1000K, 1000K,

2000K

100K, 400K,

500K, 800K,

1000K, 2000K,

2000K, 4000K

U = 0.8

IDs 27, 26N 28,

13N,

27, 19

21, 8N, 20, 13,

25, 19

8, 26, 20, 15N,

9, 11, 8, 21

Phases 0, 0 54K,

0, 0, 0

49K, 0, 0, 0, 0,

0

27K, 27K, 27K,

0, 0, 0, 0, 0

Periods 300K, 500K 500K,

500K,

1000K,

2000K

400K, 500K,

500K, 1000K,

1000K, 2000K

400K, 500K,

800K, 800K,

1000K, 2000K,

2000K, 4000K

U = 0.8, # Tasks=10

IDs 10, 8, 15, 9, 5, 11N, 20, 27, 22, 17

Phases 32K, 32K, 32K, 32K, 32K, 0, 0, 0, 0, 0

Periods 100K, 625K, 625K, 625K, 1000K, 1000K,

1250K, 1250K, 2500K, 5000K

Table 4. Task Set Characteristics: Benchmark

IDs, Phases[cycles] and Periods [cycles]

For each scheduling policy, we show results using three

analysis techniques. The first one is NPR unaware (Pre-

emptive), in which all tasks are assumed to be completely

preemptive, as in our earlier work [15]. The second is

a NPR-aware analysis, in which some tasks have a non-

preemptive region in the middle (PartialNPR). The third

analysis is a NPR-aware analysis, in which the tasks with

a non-preemptive region are assumed to be completely non-

preemptive (NonPreemptive). The results for fully non-

preemptive schedules are obtained using the algorithm de-

scribed in Figure 4 and by setting the lengths of the first and

third regions to zero. In these graphs, we omit response time

values for tasks that end up missing their deadline.

At the outset, it is to be noted that, if a task is supposed

to have a non-preemptive region, then forcing the task to

be completely preemptive is unsafe since the results of the

task could be incorrect (due to possible data races). Hence,

the results of our NPR unaware (Preemptive) analysis are

unsafe as far as the tasks with NPR are concerned. It is

purely for the sake of comparison that we present those re-

sults here. On the other hand, making a task that is supposed

to have a portion which is non-preemptive completely non-

preemptive is conservative, yet safe.

From the graphs, we make the following observations.

First of all, we observe that the results for the RM schedul-

646464

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

�

���

�

���

�

���

�

���

�

���

� � � � � � � � � � � � � � � � � � � �

���������

�
�

	
�

��
��

�

�
��

�
�

�

	
�������������

����������������

	
����������	

�������������	

	
�����������

��������������

(a) # Preemptions for U = 0.5

�

�����

�����

�����

�����

������

������

������

������

������

������

� � � � � � � � � � � � � � � � � � � �
���������

�
	

�

��
��

�

��
�

��
�

�
�

��
�

�

	
�������������

����������������

	
����������	

�������������	

	
�����������

��������������

(b) WCET w/ delay for U = 0.5

�

������

������

������

������

������

������

������

� � � � � � � � � � � � � � � � � � � ����������

�
�

�
	

�

�
�

��
�

�
��

�
�

�
��

�
� �	
������������

���
������������

�	
����������

���
����������

�	
����������

���
����������

(c) Response Time for U = 0.5

Figure 5. Results for U=0.5 under RM and EDF Scheduling

ing policy and the EDF scheduling policy are almost the

same for most tasks. For RM and EDF to exhibit a dif-

ference in behavior, a task with a longer period needs to

have an earlier deadline than one with shorter period some-

where in the execution timeline. This could happen in two

situations, namely, when the shorter period does not divide

the longer period and when there is phasing between the

tasks. In most of our task sets, neither case occurs as ob-

servable from the results. However, for a base utilization

of 0.8, we do observe small differences in the two policies.

As expected, some tasks with a shorter period (higher prior-

ity according to RM) have a longer response time with EDF.

Other tasks in the same task set with a longer period have a

shorter response time with EDF.

For most of our task sets, we observe that the response

time estimates obtained from the NonPreemptive analysis

is shorter than that obtained from the PartialNPR analysis.

The reason for this is as follows. In the PartialNPR analy-

sis, the following situation could occur. When a task is re-

leased, some task with a lower priority could have started

its NPR in the best case, but not started it in the worst.

As explained in Section 4, when this happens, we con-

sider the effects of contradicting worst-case scenarios for

the two tasks involved. In other words, we assume the worst

possible scenario for each task. This is done in order to en-

sure safety of the response time estimates. In reality, how-

ever, only one of the scenarios can actually occur. In the

case of the NonPreemptive analysis, a task that has a NPR

is assumed to be completely non-preemptive. Hence, a situ-

ation like the one described above cannot occur.

On the other hand, in some task sets, the NonPreemptive

analysis causes some high-priority tasks to miss their dead-

lines. This is because the waiting time for the high-priority

tasks are now longer since the length of the non-preemptive

region of a task extends to its entire execution time. This,

in part, compensates for the pessimism that the PartialNPR

656565

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

�

���

�

���

�

���

�

���

�

���

�

� 	
���������

�
�

	
�

��
��

�

�
��

�
�

�

���������������

����������������

������������

�������������

������������

�������������

(a) # Preemptions for U = 0.8

�

�����

�����

�����

�����

������

������

������

������

������

������

� 	
���������

�
	

�

��
��

�

��
�

��
�

�
�

��
�

�

��������������

����������������

����������

������������

������������

��������������

(b) WCET w/ delay for U = 0.8

�

������

�������

�������

�������

�������

� 	
���������

�
�

�
	

�

�
�

��
�

�
��

�
�

�
��

�
�

��������������

����������������

����������

������������

������������

��������������

(c) Response Time for U = 0.8

Figure 6. Results for U=0.8 under RM and EDF Scheduling

method introduced and is observed by the fact that the ac-

tual difference between response times of tasks in the two

cases are not significant.

We also conducted a sensitivity study using the example

task set shown in Table 1. We maintain the same periods,

phases and total execution times for all tasks. However, we

vary the length of the NPR in T2 in both the best and worst

cases. We start without a NPR for T2 and then extend the

NPR from the middle outwards symmetrically in both direc-

tions until T2 is completely non-preemptive. Table 5 shows

the WCETs and BCETs of each region for different experi-

ments. The average response times over all jobs of each task

using the RM scheduling policy are shown in Figure 7. Re-

sponse times are omitted from the graph if any job of a task

misses its deadline. At one extreme, where T2 is completely

preemptive, we see that the response time of T0 is the same

as its WCET since it executes to completion right after its

initial release. At the other extreme, when T2 is completely

non-preemptive, we see that T0 misses its deadline due to

increased waiting time. This sensitivity study demonstrates

the improved schedulability of our PartialNPR analysis over

the NonPreemptive analysis.

In summary, our work enables us to study the ef-

fects of having a non-preemptive region and the ad-

vantages of having partial NPRs as compared to com-

pletely non-preemptive tasks in a task set. Assuming that a

task is completely non-preemptive, though simpler to ana-

lyze, has the disadvantage that there is an increased prob-

Expt. # 1 2 3 4 5 6 7 8

Region1 30/20 13/9 11/8 9/7 7/6 5/4 3/2 0/0

Region2:NPR 0/0 4/2 8/4 12/6 16/8 20/12 24/16 30/20

Region3 0/0 13/9 11/8 9/7 7/6 5/4 3/2 0/0

Table 5. WCET/BCET ratios for T2

666666

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

�

��

��

��

��

��

��

� � � � � � � �

����������

	
�

�

�
�

�

�
��

�
��

�
�

�
��

�

	�

	�

	�

Figure 7. Response Times of Tasks

ability of some high-priority task missing its deadline. On

the other hand, a completely preemptive system might not

be acceptable for certain kinds of tasks that inherently pos-

sess a region in which they should not be preempted in or-

der to preserve correctness. In such cases, our analysis

may be used to calculate whether the task set is schedula-

ble or not.

6. Conclusion

We presented a framework to calculate safe and tight

timing bounds of data-cache related preemption de-

lay (D-CRPD) and worst-case response times. In con-

trast to past work, our novel approach handles tasks with

a non-preemptive region of execution. Through exper-

iments, we obtain response-time bounds for task sets

where some tasks have non-preemptive regions. We com-

pare these results to an equivalent task set where only

those tasks with non-preemptive regions are sched-

uled non-preemptively altogether. We show that, for some

task sets, schedulability is improved without signifi-

cantly affecting the response times of tasks using partially

non-preemptive tasks as opposed to fully non-preemptive

tasks. To the best of our knowledge, this is the first frame-

work that bounds D-CRPD and response times for tasks

with non-preemptive regions.

References

[1] R. Bril. Existing worst-case response time analysis of real-

time tasks under fixed-priority scheduling with deferred pre-

emption refuted. In Work in Progress (WiP) session of

the 18th Euromicro Conference on Real-Time Systems, July

2006.

[2] R. Bril, J. Lukkien, and W. Verhaegh. Worst-case response

time analysis of real-time tasks under fixed-priority schedul-

ing with deferred preemption revisited. Cs-report 06-34,

Technische Universiteit Eindhoven (TU/e), The Netherlands,

Dec. 2006.

[3] A. Burns. Pre-emptive priority based scheduling: An ap-

propriate engineering approach. S. Son, editor, Advances in

Real-Time Systems, pages 225–248, 1994.

[4] A. Burns and A. Wellings. Restricted tasking models. In 8th

International Real-Time Ada Workshop, pages 27–32, 1997.

[5] S. Chatterjee, E. Parker, P. Hanlon, and A. Lebeck. Exact

analysis of the cache behavior of nested loops. In ACM SIG-

PLAN Conference on Programming Language Design and

Implementation, pages 286–297, June 2001.

[6] B. B. Fraguela, R. Doallo, and E. L. Zapata. Automatic ana-

lytical modeling for the estimation of cache misses. In Inter-

national Conference on Parallel Architectures and Compila-

tion Techniques, 1999.

[7] L. George, N. Rivierre, and M. Spuri. Pre-emptive and non-

pre-emptive real-time uni-processor scheduling. Technical

report, Institut National de Recherche et Informatique et en

Automatique (INRIA), France, Sept. 1996.

[8] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equa-

tions: a compiler framework for analyzing and tuning mem-

ory behavior. ACM Transactions on Programming Lan-

guages and Systems, 21(4):703–746, 1999.

[9] L. Ju, S. Chakraborty, and A. Roychoudhury. Accounting for

cache-related preemption delay in dynamic priority schedu-

lability analysis. In IEEE Design Automation and Test in Eu-

rope, 2007.

[10] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong,

C. Y. Park, M. Lee, and C. S. Kim. Analysis or cache-related

preemption delay in fixed-priority preemptive scheduling.

IEEE Transactions on Computers, 47(6):700–713, 1998.

[11] C.-G. Lee, K. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha,

S. Hong, C. Y. Park, M. Lee, and C. S. Kim. Bounding cache-

related preemption delay for real-time systems. IEEE Trans-

actions on Software Engineering, 27(9):805–826, Nov. 2001.

[12] S. Lee, C.-G. Lee, M. Lee, S. Min, and C.-S. Kim. Limited

preemptible scheduling to embrace cache memory in real-

time systems. In ACM SIGPLAN Workshop on Languages,

Compilers and Tools for Embedded Systems (LCTES), Lec-

ture Notes in Computer Science (LNCS) 1474, pages 51–64,

1998.

[13] H. Ramaprasad and F. Mueller. Bounding worst-case data

cache behavior by analytically deriving cache reference pat-

terns. In IEEE Real-Time Embedded Technology and Appli-

cations Symposium, pages 148–157, Mar. 2005.

[14] H. Ramaprasad and F. Mueller. Bounding preemption de-

lay within data cache reference patterns for real-time tasks.

In IEEE Real-Time Embedded Technology and Applications

Symposium, Apr. 2006.

[15] H. Ramaprasad and F. Mueller. Tightening the bounds on

feasible preemption points. In IEEE Real-Time Systems Sym-

posium, pages 212–222, Dec. 2006.

[16] J. Staschulat and R. Ernst. Multiple process execution in

cache related preemption delay analysis. In ACM Interna-

tional Conference on Embedded Software, 2004.

[17] J. Staschulat and R. Ernst. Worst case timing analysis of in-

put dependent data cache behavior. In Euromicro Conference

on Real-Time Systems, 2006.

[18] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling anal-

ysis of real-time systems with precise modeling of cache re-

lated preemption delay. In Euromicro Conference on Real-

Time Systems, 2005.

676767

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

	Southern Illinois University Carbondale
	OpenSIUC
	2008

	Bounding Worst-Case Response Time for Tasks With Non-Preemptive Regions
	Harini Ramaprasad
	Recommended Citation

