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Abstract 

Predicting the residual saturation of a trapped non-aqueous phase liquid contaminant is 

critical to estimating the region of contamination, the design of remediation strategies, 

and risk assessment.  Models were developed to predict residual NAPL saturation 

utilizing optimization and non-linear error functions, consequently allowing for a broader 

mathematical approach to model development.  The input parameters evaluated represent 

soil and fluid properties: the uniformity coefficient (Cu), the coefficient of gradation (Cc), 

the capillary number (Nc), the bond number (Nb) and the total trapping number (Nt).   

Overall, the model that performed best was based on a second-order equation with the 

independent variables Cu and Nt1  using the sum of the squares of the errors.  The 

nonlinear error function based on a derivative of Marquardt’s Percent Standard Deviation 

performed best for three other cases. 

Keywords: Groundwater; regression analysis; optimization; NAPL; multiphase flow;  soil 

contamination 

Introduction 

The release of non-aqueous phase liquids (NAPL) into the soil may result from accidental 

spills, improper disposal and leaking underground storage tanks and pipes. Although 
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immiscible with groundwater, NAPL contaminants pose a threat to aquifers due to mass 

transfer or partitioning into the aqueous and air phases.  Once released into the 

environment, NAPL may pool in a highly NAPL saturated lens.  However, it may also 

spread over a larger region as trapped discontinuous residual due to NAPL migration, 

water table fluctuations or primary recovery efforts.   This residual NAPL is more costly 

and difficult to remove from groundwater aquifers.  Predicting the residual saturation of 

NAPL is critical to estimating the region of the contamination, the design of remediation 

strategies, and risk assessment. 

Residual NAPL saturation (Srn) has been reported and estimated from curves where Srn is 

a function of the capillary number (Nc), the bond number (Nb) and the total trapping 

number (Nt) (e.g. Morrow and Songkran, 1981; Taber, 1981; Wardlaw, 1982; Chatzis et 

al., 1983; Mercer and Cohen, 1990; Pennell et al., 1996; Dawson and Roberts, 1997).  

These dimensionless numbers represent the ratio of viscous, capillary and buoyant forces. 

The common approach in all of these studies was to measure single values of Srn in order 

to develop curves reporting the trend of Srn as a function of the dimensionless numbers 

relating the ratio of viscous, capillary and buoyancy forces. 

Chevalier and Fonte (2000) evaluated data from approximately 100 column studies in 

order to evaluate the use of an empirical model to predict residual NAPL saturation from 

fluid and soil properties using Nc, Nb, Nt, the uniformity coefficient (Cu) and the 

coefficient of gradation (Cc).  This analysis relied on the regression analysis in 

SigmaPlot


 . 

( )824.071.3 2142.0107.0112.0 == −−
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The overall objective of this research was to further evaluate                                                                  

correlation models to predict the amount of trapped residual NAPL based on a more 

systematic approach that utilizes optimization to minimize the error.  This technique has 

been used to determine isotherm parameters (Allen et al., 2003; Ho et al, 2002; Khan et 

al., 1997; Malek and Farooq, 1996; Seidel-Morgenstern and Guiochon, 1993; Seidel and 

Gelbin, 1988).   The use of optimization allowed for a choice of the error function and 

consequently a broader mathematical approach to model development.  In this study, five 

non-linear error functions were examined for a second-order model with two quantitative 

independent variables as well as a model with three independent variables.   

Background 

The terminology for variably saturated soils has not been developed in a consistent 

manner.  Several terms have been used to define an immiscible fluid surrounded by water 

in the porous space of soils.  These terms include “entrapped”, “residual”, “trapped” and 

“nucleated” (Faybishenko, 1995).  In addition, the term residual has been used to refer to 

NAPL in the vadose zone, which may or may not be continuous.  This research is focused 

on discontinuous NAPL in previously water saturated soils found below the upper region 

of the capillary fringe.  The term residual will be used, and the saturation of residual 

NAPL will be referred to as Srn.  

In a hydrophilic soil, NAPL is the non-wetting fluid, whereas water is the wetting fluid.  

The non-wetting fluid can become trapped as a residual as a result of snap-off or by-

passing as the wetting fluid imbibes into soils where the two phases were previously 

continuous (Wardlaw, 1982; Chatzis et al. 1983). The factors which determine the 

mechanisms of trapping include the geometry of the pore network, fluid properties 
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(interfacial tension, density, viscosity), the applied pressure gradient and gravity  Morrow 

and Songkran (1981).  These factors are frequently reported in dimensionless numbers 

that relate the ratio of viscous, buoyancy (gravitational) and capillary forces. The 

capillary number, Nc, relates the ratio between viscous and capillary forces: 

σ
µv

Nc =                     (2) 

where v is velocity of the aqueous phase, µ is viscosity of the aqueous phase and σ is 

interfacial tension between the immiscible phases.  The Bond number, Nb, relates the 

ratio between buoyancy (gravitational) and capillary forces: 

σ
ρ 2

gR
Nb

∆
=  (3) 

where ∆ρ is the difference in density between the immiscible fluids, g is the gravitational 

constant and R is a characteristic soil dimension, such as the mean grain size diameter.    

The total trapping number Nt is based on two dimensionless parameters, the capillary and 

bond numbers. Morrow and Songkran (1981) defined Nt as:  

NbNcNt1 001412.0+=  (4) 

Pennell et al. (1996) derived an alternative definition for the total trapping number in the 

horizontal direction: 

2NbNcNt2 += 2
     (5) 

Cu and Cc are the uniformity coefficient and the coefficient of gradation, which are 

determined from sieve analysis: 

10

60

D

D
Cu =  (6) 
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where Dn is the diameter in the particle-size distribution corresponding to n% finer.  

Materials and Methods 

Experimental Method 

The detailed experimental method was reported in Chevalier and Fonte (2000).  In 

summary, the soils used were several grades of 4010 industrial quartz, fine silica sand 

from the Unimin Corporation (Associated Lumber, Carbondale, IL) and two different 

grades of a filtration sand and gravel (coarse silica sand) from the Unimin Corporation.   

The wetting phase used in these experiments was distilled, deionized, deaired water.  

Soltrol was selected as a representative NAPL contaminant based on the desirable 

physical properties of low solubility and low volatility.  These properties limited the mass 

transfer that occurs into the air and water phases in order to focus the study on the 

entrapment of the immiscible phase.  To observe the immiscible fluid movement and 

entrapment, a red oil soluble dye was used to dye the Soltrol (Oil Red O biological stain, 

Aldrich Chemical Co., Milwaukee, Wisconsin).  The interfacial tension between dyed 

Soltrol and pore water, measured by a Fisher Scientific Tensiomat 21 du Nouy ring 

tensiometer, was 40.3 (± 4.5%) dynes/cm.  Viscosity of dyed Soltrol, measured using a 

Gilmont falling ball viscometer, was 4.08 (±0.14%) cp.  The density of the dyed Soltrol 

was 0.775 (±0.12%) g/cm
3
.  All measurements were conducted at 24° C.   The use of dye 

had no discernable effect on the flow or trapping of residual NAPL. 

To establish a residual NAPL saturation in the soil, the column was subject to a vacuum, 

then saturated with deaired water, followed by flushing with NAPL.  Water was then 
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reintroduced at different flow rates in order to vary Nc.  The range in Nb was established 

by grain size diameter.  The final ranges of the capillary and bond numbers were 

10
-7

<Nc<10
-5

 and 10
-3

<Nb<10
-2

.   

Error Functions 

In this study, five non-linear error functions were employed Ho et al. (2002).  Similar 

error functions were used by Allen et al. (2003). 

1. The Sum of the Squares of the Errors (ERRSQ) 

( )( )∑
=

−
p

i

ii yEy
1

2
 (8) 

2. A Composite Fractional Error Function (HYBRD) 
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3. A derivative of Marquardt’s Percent Standard Deviation (MPSD) (Marquardt, 1963) 

( )
∑
=
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4. The Average Relative Error (ARE) (Kapoor and Yang, 1989) 

( )
∑
=

−p

i i

ii

y

yEy

1

 (11) 

5. The Sum of the Absolute Errors (EABS) 

( )∑
=

−
p

i
ii yEy

1

 (12) 

Models Evaluated 
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Models with two quantitative independent variables (x1 and x2) may be represented by a 

second-order equation: 

( ) 2

25

2

1421322110 xxxxxxyE ββββββ +++++=  (13) 

where βn are coefficients.  With additional independent variables, this can be expanded. 

An alternative approach for three independent variables is: 

( ) 321

3210

ββββ xxxyE =  (14) 

These equations will be evaluated using the dimensionless numbers derived from fluid 

and soil properties as the independent variables (Eqns. 2-7). 

Results and Discussion 

To predict Srn, the independent variables evaluated were Cu, Cc, Nc, Nb, Nt1 and Nt2.  The 

model parameters were determined by minimizing the respective error functions using 

the solver add-in of Microsoft Excel®.  The evaluation was conducted in two phases.  

The initial phase evaluation involved 15 cases that minimizing the error function ERRSQ 

(eqn. 8).  The best performing models were then used for a second phase evaluation using 

the remaining error functions (eqn. 9-12), 

Models with two independent variables (Cases 1-9) were based on Eqn. 13.  Models with 

three independent variable (Cases 10-15) were based on Eqn. 14.   Table 1 indicates 

which variables were evaluated for each case, and the resulting correlation coefficient, 

R
2
. 

t

rt

S
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R

−
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   (15) 
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( )( )22∑ ∑ −== yEyeS ir  (17) 

In this study, Sr is based on eqns. 8 and 17, as opposed to the other error functions.  In 

this first phase, R
2
 ranged from 0.09-0.86, as shown in the last column in Table 1.  Cases 

5, 9, 12 and 13 resulted in R
2
 > 0.7, and were selected for further study in the second 

phase.  The equations for these cases were: 

2

1

2

1 81.126.001.042.063.1 NtCNtCS uurn +−+−=  (Case 5) (18) 

22 7.1731415.0128115497.24 NbNcNcNbNbNcSrn +−−−−−=  (Case 9) (19) 

14.0

1

1.013.061.3 −−= NtCCS curn  (Case 12) (20) 

14.0

2

12.02.098.3 −−= NtCCS curn  (Case 13) (21) 

The coefficients for of Case 5, 9, 12 and 13 are also present in the first column of tables 

2-4.    

In the second phase additional error functions were used (Eqn 9-12).  Minimizing the 

error based on these functions provided a broader mathematical approach to model 

development.  The results are shown in Tables 2-5.  In these tables, the values for the 

coefficients are reported for each evaluation of the five error functions.  In addition, the 

coefficient of variation (│standard deviation/average*100│) is reported for each variable.   

The root mean square residual (RMSR) was used as a more sensitive statistical parameter 

to determine the best fit in these cases. 

( )( )
N

yEy
RMSR

ii

2∑ −
=  (22) 

Previous research on determining isotherm parameters (Ho et al. 2002; Allen et al. 2003) 

reported that the MPSD and HYBRID error function provided the best fit.  This trend was 

observed in part in this study.  For Case 5, the ERRSQ function provided the best fit 
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overall.  For Cases 9, 12 and 13, the MPSD error function provided the best fit.  Figure 1 

shows the difference between the ERRSQ and MPSD error functions for f(Srn)=Srn - 

calculated.  For the range of data studied, the ERRSQ error function shows a stronger 

correlation, where as a linear trend is shown for the MPSD error function. The best fit for 

Cases 9, 12 and 13 are shown in Figure 2.   The three parameter model used in Case  12 

resulting in the smallest range for the coefficient of variation (5-24%) for the error 

functions evaluated. 

Conclusion 

Optimization coupled with an evaluation of error functions was investigated to determine 

the best model and coefficients to predict the residual saturation of NAPL in aquifer soils 

based on fluid and soil properties.  The method presented provided a mathematically 

rigorous method for evaluating parameters that represent fluid and soil properties as 

independent variables to predict residual NAPL saturation.  Overall, the model that 

performed best was based on a second-order equation with the independent variables Nc 

and Nb.   An alternative model, and possibly more practical, was based on an expanded 

power model based on the parameters Cu, Cc, and Nt.  The expanded power model could 

have been solved through log-log linear transformation.  It is important to note that the 

method presented in this research for determining coefficients avoids the bias that results 

from techniques such as linearization.  The model developed in this research theoretically 

should apply to different immiscible organic fluids and soils.  However, further testing is 

needed to test this inference.   
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Table 1: Coefficients and equations evaluated for each case in phase one of the 

evaluation. 

Case 

Number Cu Cc Nc Nb Nt1 Nt2 Eqn. R
2
 

1 x   x   13 0.28 

2  x  x   13 0.27 

3  x x    13 0.09 

4 x  x    13 0.59 

5 x    x  13 0.74 

6 x     x 13 0.56 

7  x   x  13 0.09 

8  x    x 13 0.09 

9   x x   13 0.86 

10 x x  x   14 0.23 

11 x x x    14 0.41 

12 x x   x  14 0.82 

13 x x    x 14 0.71 

14 x  x x   14 0.60 

15  x x x   14 0.61 
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Table 2: Evaluation of Srn = f(Cu, Nt1), Case 5. 

 ERRSQ HYBRD MPSD ARE EABS CV (%) 

βo -0.06 3.04 1.63 5.92 6.26 81 

β1 -207.31 -0.82 -0.42 0.00 0.00 222 

β2 0.02 -0.42 0.01 -1.45 -1.73 115 

β3 -0.02 0.00 0.00 0.00 0.00 221 

β4 -295.60 -1.18 -0.60 0.00 0.00 222 

β5 0.23 11.91 12.81 9.07 9.68 57 

RMSR 0.003 0.149 0.037 0.100 0.408  

       

Table 3: Evaluation of Srn = f(Nc, Nb), Case 9. 

 ERRSQ HYBRD MPSD ARE EABS CV (%) 

βo -24.67 -72.91 -95.57 -98.10 -99.04 41 

β1 -1548.54 -37473.93 -0.44 -0.08 -0.11 213 

β2 -1281.15 -413.91 -5.46 -7.28 -7.67 161 

β3 -0.15 -1.42 0.00 0.00 0.00 198 

β4 -314.04 -576.79 -0.61 0.00 0.00 146 

β5 17.66 18.57 17.99 18.05 18.10 2 

RMSR 0.681 0.094 0.043 0.186 0.752  

 

Table 4: Evaluation of  Srn = f(Cu,Cc, Nt1), Case 12. 

 ERRSQ HYBRD MPSD ARE EABS CV (%) 

βo 3.72 3.65 3.61 3.18 3.31 7 

β1 -0.11 -0.12 -0.13 -0.17 -0.15 16 

β2 0.10 0.10 0.10 0.14 0.16 24 

β3 -0.14 -0.14 -0.14 -0.16 -0.15 5 

RMSR 0.823 0.202 0.050 0.191 0.774  
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Table 5: Evaluation of  Srn = f(Cu,Cc, Nt2), Case 13. 

 ERRSQ HYBRD MPSD ARE EABS CV (%) 

βo 3.87 3.91 3.98 4.17 4.15 3 

β1 -0.17 -0.18 -0.20 -0.23 -0.17 14 

β2 0.13 0.12 0.12 0.20 -0.04 82 

β3 -0.15 -0.15 -0.14 -0.14 -0.14 2 

R2 0.709 0.707 0.701 0.921 0.685  

RMSR 1.044 0.262 0.066 0.234 0.927  
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Figure 1: ERRSQ and MPSD error function for Case 5. 
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Figure 2: Comparison of MPSD error function for Cases 9, 12 and 13. 
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