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Synopsis

The rheology of concentrated, aggregated colloidal suspensions is determined through particulate
simulations. Aggregating systems experience a large viscous enhancement over nonaggregating
systems, this being due to the increase in the component of the viscosity arising from the repulsive
colloid (thermodynamig forces when attractive forces are present. The shear behavior of
aggregating systems, for colloid volume fraction 047, < 0.57, is characterized in the steady

state regime over a wide range in shear rate, and is found to be power law, shear thjnning

~ f(pc)y ¢, where the shear thinning index = 0.84+0.01. The effect of volume fraction
enters asf(¢¢) = (1—¢C/¢max)_1, with ¢max = 0.64, the value of random close packing;
similarly, the viscosity also scales with the potential well depth as a power law, of index
Consequently, we are able to deduce the full constitutive relation for this power law behavior. The
associated structural features which emerge as a result of the imposed shear are identified with the
rheology. The shear thinning regime crosses over into a state of ordered phase flow at high shear
rates likewise simulations of hard sphere fluids. We also show that the high-shear ordered
configurations appear to be a function of colloid concentration, with a transition from string phase
order through to layered phasesdsincreases. ©1999 The Society of Rheology.
[S0148-60589)00603-3

I. INTRODUCTION

Flowing colloids exhibit a wide range of phenomena that are of scientific and techno-
logical importance. Recent theoretical treatments, focusing on model hard sphere systems
experiencing weak shear floWsionberger(1998], have made progress at reproducing
experimental and simulation data. For the case of concentrated systems, such issues
become increasingly difficult to study analytically due to the intrinsic many-body nature
of the system. Computer simulations allow us to study these systems, albeit a reduced
version thereof, and hence help to shed light on the details concerned with the flow
properties of concentrated suspensions. The most beneficial aspects come from the elu-
cidation of the micro-rheological and microstructural behavior of the constituent macro
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particles making up the suspension under flow. A knowledge of this behavior is still very
much unknown in detail especially at high working concentrations, as is the case in this
study.

There has been an extensive effort in the study of model hard sphere systems over a

range of volume fractiong., from the dilute to the concentrateéb(( = 0.40) regimes.
From a simulation point of view, many definitive works exist, includ{ihunget al.
(1996, for example, among others. However, although the shear behavior of aggregated
systems also continues to be studied through both experimental techfiRptes and
Russel (1987, de Rooij et al. (1993] and computer modelingMelrose and Heyes
(1993, Wessel and Bal{1992, Potanin and Russ€1996, Potaninet al. (1995, Chen

and Doi (1989], most of these simulations have been performed at low-moderate con-
centrations, lower than of interest here, and largely neglect the effects of hydrodynamic
interactions between the colloidal particles. We have previously reported three-
dimensional(3D) simulations of concentrated systems that include hydrodynamics and
aggregating forcefSilbertet al. (1997)]. Likewise, simulations in two dimensior{&D)

have been performegdilodeau and Bousfield1998]. Buscallet al. (1993 carried out
experimental investigations on the rheology of depletion-flocculated suspensigns at

= 0.40, whereas Verduiat al. (1996 and Rueb and ZukoskiLl997 probed the struc-

ture of “colloidal-gel” systems, volume fraction circa 25%, using light-scattering tech-
nigues.

In our earlier study Silbertet al. (1997 ] we tested our simulation model over varia-
tions in a parameter space of particle motions for an idealized, concentrated, aggregated
suspension composed of monodisperse, spherical particles. The model included hydrody-
namic interactions between the colloidal spheres in an approximation appropriate at high
concentrations: the hydrodynamic interactions are dominated by lubrication modes be-
tween close approaching spheres. We compared results with varying approximations to
the hydrodynamic model: simulations just with squeeze interactions and free particle
rotations, and simulations with shear lubrication and coupled particle rotations. In addi-
tion, we switched Brownian forces on or off. Results for viscosity with shear terms were
10%—-20% higher than those with just squeeze terms, while at intermediate shear rates
Brownian forces lowered the results by some 20%. We validated our results against
existing experimental data on the shear flow of depletion-flocculated suspensigps at

= 0.40.

Here we restrict much of the following study to a model with squeeze hydrodynamics
only, neglecting the additional shear terms and Brownian forces. This restriction plays no
qualitative role on the final resul{Silbert et al. (1997]. We introduce the simulation
model in the next section. Here we summarize the simulation technique, together with a
brief introduction to the colloid forcegaggregating and repulsive term$lowever, a
more thorough discussion of the technique can be found elsey/Bateand Melrose
(1997, Silbertet al. (1997)].

In the Results section we expound those points left open in the previous paper with an
in-depth discussion on the steady state behavior of the normal stresses and the structural
implications of these results, including simulation-generated intensityl lafethat pro-
vide us with a time-averaged determination of structural effects in the shear thinning
regime as well as at high shear rates. We cover a wider rangg jrfinding universal
rheology persists to very high concentrations and over many decades in shear rate. Pres-
ently we are unable to simulate at very low shear rates and the first Newtonian plateau
due to computational restrictions, and therefore report findings for intermediate to high
shear rates.
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We determine the functional dependence of the viscosity on the colloid volume frac-
tion, and we also explore the effect of the aggregating potential, which enables us to
provide a full constitutive relation that characterizes the rheology of our model system in
the shear thinning regime. A brief look at the transient behavior of the flow is also given.
A (cautious comparison is made with experimental scattering data, showing that our
simulations share some qualitative features with experiment. We end with a discussion of
our findings.

Il. SIMULATION METHOD
A. Equations of motion

The simulation modeling essentially comprises a verfail and Melrosg1997)] of
Stokesian dynamidBossis and Brady1984), Durlofsky et al. (1987] which enables the
study of concentrated colloidal systems by incorporating Lees—Edwards boundary con-
ditions[Lees and Edward&l972] on arbitrarily large, defined by the computational box
volume (), periodic cells. We define the hard core colloid volume fractiah,

= (77/6)pd3 of N particles of diameted, with particle number densitp = N/Q. In
considering time scales long with respect to the viscous momentum relaxation time of the
suspension, we treat the particles at the Langevin/Smoluchowski level and the fluid by
the creeping flow equations. Stick boundary conditions are imposed on the fluid at the
particle surfaces.

The equations of motion foN such particles immersed in a Newtonian fluid with
viscosity u thus express a quasistatic force balance

Fl+FP+FB = 0. 1)

The 6N force/torque vectors aréi) hydrodynamic forcesH, exerted on the particles
due to their relative motions in the presence of the solvg@intcolloidal forcesFF (the
sum of repulsive and attractive termand (iii) Brownian forcesFE.

The termsF™ andFB have approximate representations and their detailed expressions
are available elsewhef8all and Melrosg1997), Silbertet al. (1997)]. In the version of
Stokesian dynamics ¢Bossis and Brady1984), Durlofsky et al. (1987 ] a low moment
mobility tensor is combined with lubrication terms in the resistance tensor. In a concen-
trated system, however, we argue it is dominated by lubrication hydrodynamic
terms between the close approaching surfaces of the colloidal spheres. This leads to a
more approximate form for the hydrodynamic interactions in which the resistance matrix
is two body and short ranged. Note that the inversion of this resistance matrix does give
a long ranged, many-body mobility matrix. We suggest that at high concentratigns (

> 0.40) the additional long ranged parts lead only to small improvements. The trun-
cated algorithm used here involves only the inversion of sparse matrices and is faster,
O(N1'5) rather thanO(N3), although we note that efforts continue to develdopN)
versions of the algorithm of Bossis and Braty984), Durlofsky et al. (1987 [Brady
(1998].

Others are using this truncated schefBdodeau and Bousfield1998, Doi et al.
(1987, and Toivakkeet al. (1995]. We discuss elsewhere the accuracy and point out the
likely sources of errors in shear terrfBall and Melrose(1997), Silbertet al. (1997)].

The calculation ofB is also discussed elsewhdi@all and Melrosg(1997), Bossis and
Brady (1989

In this work, the colloid force termFP, contains both attractive—hence the term
“aggregated” colloids—and repulsive terms. We choose to model depletion aggregated
colloids, that is, colloids in a mixture with nonadsorbing polymers of &geat volume
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fraction ¢, (which sets the depth of the attractive welVe assume a size ratio 1:10
between the polymer to colloid diametdii®., Rg/d = 0.1, this sets the range of the
attractive forcg and in the pseudo one-component, macrofluid approximation, we there-
fore model the aggregating forcE¥Pon the Asakura—OosawAO) depletion potential
[Russelet al. (1991)]. This has recently been measured for the case of callpadymer
mixtures near a wal[Rudhardtet al. (1998], though recent work has highlighted the
limitations of the AO potentia]Gotzelmannet al. (1998].

In the AO approximation, the depletion forf:%epacting between two colloid particles
with a center—center separatiof = |rij| (the unit vectom;; points fromi to j) is given
by

QkgT

dep _

—n;; [£%—(r;; Id)ZIH(Ld—1y)) )
and is determined by the step functiét(x). £ depends on the size ratRy/d as L
= 1+Rg/d and sets the range of the attractive forces; the interaction strén@tiich

determines the depth of the potential wetlepends on the polymer volume fractigp
as

_3 % @
Q 2 (Rg/d)g'

A short range repulsive fordd®P is also included at the surface of the spheres. This
takes on the form of a Hookean spring force mimicking the osmotic part of an attached/
adsorbed polymer layer. The spring coat thickneks, sets how much the thermody-
namic size of the particle exceeds the hydrodynamic size, and the strength of the spring
(which sets the maximal force the spring can supply before collapgarameterized by
the dimensionless stiffne$s, which is given the value Tothroughout this study.

We emphasize the significance of including this short range force in the context of our
flow simulations. This issue has been extensively and correctly addres$Bdaler and
Schowalter(1996]. Computationally, the surface coats are necessary to avoid particle
overlaps, even though our simulations incorporate variable time steps. However, there are
clear physical reasons for the inclusion of a repulsive colloid force term. For the case of
sterically stabilized or depletion aggregating colloidal systems, colloid particles usually
include some form of steric barrier to avoid irreversible coagulation in the deep van der
Waals primary minima. Perfectly smooth, here we denote as “bare,” particles do not
exist, although simulations of this pathological case of bare hard spheres have been
carried oufMelrose and Bal(1995]. Such systems never reach a steady state flow and
jam after finite strairjFarret al. (1997].

The resulting repulsive forcé{i” on particlei due to the near approach pfwith
center—center separatiof) is

rep —n;j[Fo—(Fo/26c)(rjj—d)] for rjj—d < 26 @
L) for rij—d > 24,

The resulting interaction potential is shown in Fig. 1, and may be thought of as the
colloidal equivalent of a Lennard-Jones system. This potential is characterized by the
values of certain parameters defined in the simulation. These parameters, together with
their typical values, are summarized in Table I.

Although we restrict our study to this particular functional form of the interaction
potential, we believe that in this one-component, macrofluid approximation, the form of
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FIG. 1. Interparticle colloid pair-potentidl(r), and force law—dU(r)/dr, with the following set of param-

eters; polymer concentration parametéyp, = 0.7, size ratioRg/d = 0.1, polymer coat thickness.
= 0.004.

the interaction potential, so long as it resembles Lennard-Jones-type potentials, will not
give rise to qualitative differences. Though we suspect that differences might be observed
in the rheology if the attractive forcéand the repulsive terms for that majtect over
distances of order the colloid size. We have performed simulations with different repul-
sive termgbased on a more realistic model for a surface polymer Jdyitbert (1998 ]
from which the rheology data were seen to qualitatively match our previous studies using
Hookean springs, and have concluded that the Hookean spring force we use here, al-
though crude, captures the essential physics of the surface steric interactions.

The size of the cubic simulation box has side lengtk 013 10 provide a reason-
able study of rheology and structure we study systems Witk 200, and 700 corre-
sponding toL = 6, and 9, respectively. We have also performed simulations over a
wider range of system sizes, showing that even in the limit of very large systdms (
= 4000), in rectangular boxes, the results are quantitatively identical. It is only in small
systems, saWN < 50, L < 4, that system size effects show up in the rheology. We
reason that the smallness of the box in smalimulations interferes with the micro-
structural mechanisms that give rise to the observed rhed®Biljyert (1998 ].

TABLE |. Typical simulation parameters which characterize the model
system and the values they are given in many of the following studies.

Parameter Value
Colloid volume fractiong, 0.50
Number of particlesN 200
Surface layer thicknesé, /d 0.005
Size ratioRg/d 0.10
Polymer volume fractionpp 0.70

Potential well-depthU min /kgT 9.0
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B. Computation of the stress tensor

In the computation, the bulk stress of the suspension is computed as the sum over
nearest-neighbor, interacting particle pairgnd j. We define nearest-neighbor pairs
through a neighbor list defined on a three-dimensional tetrahedral Delaunay mesh. The
vertices on the mesh define the positions of the particle centers, and consequently the
mesh edges define particle separations. With this rule, all particles whose centers lie
closer than/2 (diametersd = 1 in the simulatiohare neighbors(We point out that due
to this procedure some nearest neighbors will occasionally be slightly beyond the lubri-
cation approximation range, however, we still employ the approximate hydrodynamic
terms regardlesk.

Thus the stress is given by

1
— a. B
o= Q}ﬂ‘,%‘,fijr,ﬁa , (5)

where the edge vectar; is the center—center vector separation from particle its
neighborj, and the sum oves is the sum over the various colloid and dissipative forces
fi"j‘ . The Brownian contribution to the stres$ is detailed elsewheri@all and Melrose
(1997, Bossis and Brady1989]. Normalization is with respect to the volume of the
computational box).

In simple shear, the apparent viscosijyat a given shear ratg is given by

) = ox( WY, (6)

where thexy component ofo represents the shear gradient-flow element of the stress
tensor. It is convenient to normalizgwith respect to the solvent viscosity, and so we
define the relative viscosity, = 7/u.

The total viscosityy, itself may be decomposed into contributions arising from the
force components wherei4 and 77:3 denote the hydrodynamic and Brownian contribu-
tions to the relative viscosity, and the interparticle colloid force contribution to the vis-
cosity 77rP , comes from the sum of the repulsive compon@rﬁ’fq and the attractive

componentnf A [compare this notation with Eq1)].

We measure the imposed shear rate in terms of the accepted nondimensional shear rate
the Peclet number. In the simulations, the units are chosen so that the particle ddymeter
the solvent viscosityu, and the thermal energygT, Boltzmann’s constant times the
absolute temperature, are numerically equal to unity. We define the Peclet nirgtzs,

Pe = . 7
©T T @

In these units, therefor®e isthe shear rate. Consequently, time is measured in units of
d3u/kgT and force in units okgT/d.

Although most of our simulations do not include Brownian forces, we nevertheless
insist on measuring the shear rate in unit®efalthough it is not strictly correct to do so.
Our previous studiefSilbert et al. (1997] on model variations, that compare systems
with and without Brownian forces, show that the inclusion of Brownian forces plays no
qualitative role in determining the rheology of such systems.

For simulations without Brownian forces, a typi¢aariable time step aPe = 1.0 is
At = 3x10°4 (i.e., = 3% 103 iterations to reach unit strainn units where the shear
rate and the particle diameter are both set equal to unity. A simulation of 700 particles
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running for 2x10° iterations takes just a few hours on a standard workstation. For
simulations that do include Brownian motion, the time step is generally reduced, and at
Pe = 1.0,At = 2x 10 °. Time steps vary approximately linearly with shear rate.

Ill. RESULTS

A. Steady state rheology

Concentrated aggregated suspensions form gel- or glassy-like structures when allowed
to equilibrate without shear. Brownian dynamics simulations have been used to study the
stress—strain transient regime of model particle gels, see @edt (1994 and more
recently Whittle and Dickinsori1997. Such systems are strictly metastable, and can
remain in an aggregated state for time scales which far exceed the times of the simulation
studies. Therefore, with regards to our simulations, crystallization or irreversible coagu-
lation is not observed when at rest. However, the effects of the imposed shear will change
the nature of these colloidal systems as will be shown throughout this work. One can
imagine that the states which are not observed when no shear is applied are frustrated, but
can either be enhanced or conversely suppressed when the shear is switched on.

The following studies are solely concerned with the steady state behavior of flowing
colloids. It is thus necessary to ensure that the collected data are taken beyond the
transient regime so that any memory/start-up effects are erased. The notion of the steady
state regime with respect to the simulations can be realized after a time, measured in units
of strainy, at which the bulk system has reached a state of dynamic equilibrium. Loosely,
we can define this state as the point in the simulation at which the fluctuations in the
sampled viscosity diminiskand hence the associated errors are minimijzadd a con-
stant viscosity with time is attained.

Figure 2 compares the temporal behavior of the viscosi§eat= 1.0 for two differ-
ent starting configurations. The first start-up sequence uses a Monte (Wa@)ogener-
ated hard sphere configurati¢tenoted by the solid diamonds in Fig.\2here the shear
and the aggregating forces are switched on at the same time. This sequence is character-
ized by an initial rise in the computed viscosity. The preaggregated start-up configuration,
in which the aggregating forces and Brownian forces are switched on prior to shearing to
allow the system to reach an aggregated state, is characterized by an initial fall in the
viscosity (see inset to Fig. 2

In general, Fig. 2 shows that each system undergoes a transient regime for the first part
of the flow, up toy = 10 for the MC curve, ands = 40 for the preaggregated curve,
during which the viscosity increases for the MC configuration and decreases for the
aggregated configuration. However, after this transient regime, the computed viscosity
reaches its steady state value. A small drift is sometimes evident, as in the data of Fig. 2,
but we consider that beyongl = 10 (or 40 the system has reached the steady state
regime. We note that the MC configuration provides a shorter route to the steady state—
almost three times quicker than for the preaggregated configuration—thus proving more
convenient in reducing the computer time required to reach the steady state.

By comparing the response of the two systems, the shape of MC curve can be ex-
plained thus; when the simulationfisst started for an initially MC hard-sphere configu-
ration, the aggregating forces and shear are turned on together. Initially the colloids
“feel” the attractive forces between them, suggesting that the initial reaction is for the
particles to fall into the attractive wells provided by their neighbors. During this stage, the
imposed flow, together with the attractive forces, initially gives way to large scale net-
work formation and particle—particle bonds are being formed at a greater rate than they
are broken: a transient gel-like network forms. These transient configurations are widely
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FIG. 2. Start-up transient regime &e = 1.0 for a hard-sphere Monte Carlo generated configurgsotid
diamond$ and pre-aggregated rest staselid squares The inset shows in more detail the evolution of the
pre-aggregated start-up configuration.

regarded to be different from those achieved once the system has reached the steady state
[Wolthers (1997]. Such large scale structures are likely to dominate the stress in the
system in the first instance, leading to an initial sharp rise in the viscosity. With continued
application of the shear, restructuring occurs in such a way that the initial large scale
structures break and rupture, and hence the viscosity ceases to increase. After this stage
the bond formation and breakup processes equilibrate—the steady state mechanism now
dominates—qgiving rise to the observed steady state behavior and the viscosity levels.

B. Shear thinning

The computed rheology curves of two 200 particles systengs.at 0.50 are shown
in Fig. 3: one with aggregating forcéwith Ui, = 9.0kg T—we use the notation that
U min is the positive value of the well depttthe other without aggregating forcés., a
hard sphere suspensjorBoth systems include hydrodynamic interactions, Brownian
forces,and Hookean spring surface forces. The relative viscosityis computed over
many decades in the dimensionless shear PateAdditional points are plotted d®Pe
= 1.0, where we have varied the strengtut not the rangeof the attractive forces;
Umin = 5.2kg T and 2.&kgT. Because the stress is computed as a running average over
many configurations during the simulation, the associated error bars represent noise in the
steady state.

The rheology data in Fig. 3 qualitatively match experimental studies, at lower colloid
concentrations, on depletion-flocculated suspendiBoscallet al. (1993, Russelet al.
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FIG. 3. Comparison of rheology between an aggregating systeith Ui, = 9kgT) and a nonaggregating
system(hard sphere modelat ¢ = 0.50 andN = 200. All systems include a short steric coat and full
hydrodynamic lubrication modes and Brownian forces. Additional poinBeat= 1.0 are included where we
have varied the depth of the potential well. The inset shows the high shear rate region.

(1991 ], as well as studies on “colloidal gelsfRueb and Zukosk{1997, Huang and
Sorensen(1996], whereby shear thinning is seen over a large range of shear rates.
However, we do not shear at low enouBle to observe thdirst Newtonian plateau,
characterized by theero-sheawiscosity 7o, due to computational restrictions. To shear

at lower values ofPe than shown in Fig. 3 would require an inordinate amount of
computer time to reach the steady state. Thus the rheology data presented here corre-
spond to the latter part of an equivalent experimental rheology ci®ibert et al.

(1997)].

In the shear thinning regime, the viscosity of the aggregating system is greatly en-
hanced over the nonaggregating system and this disparity becomes more pronounced the
deeper the well depttsee additional points on graptOn approach to the high shear rate
region Pe > 10.0, the viscosity of the aggregating system undergoes a transition, 10
< Pe < 100, to a region where the viscosity eventually appears to level as it reaches
the second Newtonian platea(see inset Before the pseudo-plateau regidpe
< 100, the system undergoes gross structural rearrangements, although well-defined
order is not yet achieved, until &e = 100.0 the particle configurations do achieve an
ordered state of flowwhich at this volume fraction is seen to be string phase flow as
shown in Fig. 6. Experimentally, the infinite-shear viscosigy. is usually determined
from the value of the viscosity at the second Newtonian plateau. However, this is never
truly reached in the simulations and, although the viscosity goes through a minimum



682 SILBERT, MELROSE, AND BALL

15000 T i B A B AL | T T T T T
\
] Total
|
\ 10 T T
| Pp F
| G —-©On 8 i
10000 \ .
I e -
|
L oo’
N, 5000 + I
-8 _
0r i
]
P ’/
m N i al 1 1 3 1 it 1
-5000 - L L
10" 10° 10% 100 10 100 10° 100 10°

Pe

FIG. 4. Contributions to the viscosity of the aggregating systém,, = 9%g T, arising from the individual
forces. The inset shows the approach to high shear rates.

(from which we initially determiney..), the aggregating system eventually shear thickens
at very high shear rates.

In comparison, the hard sphere system shear thins to a much milder degree than the
aggregating system, and then thickens at lower shear rates. In the hard sphere case,
ordering under shear occurs at much lower shear (lfore the onset of shear thick-
ening. The presence of the attractive forces effectively inhibits the disorder—(sidear
thinning—shear orderingransition. Although we restrict our study to shear thinning and
shear ordering, others have investigated the role of colloid forces on shear thickening
[Boersmaet al. (1995].

In Fig. 4 we analyze the contributions to the total viscosity of the aggregating system
by plotting the components of the viscosity arising from the force components; the

colloid repulsive Hookean surface force contributewfcfe, the colloid attractive deple-

tion term nrp A and the hydrodynamic forosqueeze fordenrH . It is only recently that
progress has been made in decomposing these terms experimgBeaitier and Wagner
(1995].

In the shear thinning regime the Hookean spring surface force dominates the com-
puted viscosity for the aggregating system. This is also true for the hard sphere system
(see Table . It is quite puzzling, at first sight, why the aggregating forces appear to
contribute negligibly to the viscosity. In contrast, the common ingredient in many theo-
ries is the stretching and breaking of aggregated bonds between particles, and, although
this is occurring to some degree, the results of Fig. 4 suggest that the dominant positive
contribution to the total viscosity comes from the compression of close approaching
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TABLE Il. Total viscosity », and the Hookean contributiowrPR for
systems atp. = 0.50, sheared &e = 1.0. As the interaction well deep-
ensy, increases along witb\;rpr.

Umin 9kgT 5.2kgT 2.6kgT Hard spheres
" 39.5 25.2 17.6 16.4
mPR 38.2 24.4 16.0 10.9

particle surfacesthough not so close that the hydrodynamic lubrication forces diyerge
Bender and Wagnef1995 were able to show that the viscous response in a flowing
colloidal system is due to the repulsive colloid forces. Dratler and Schowd!é£6

have also performed simulations, albeit in 2D monolayers, that predict the viscous re-
sponse of a concentrated system is greatly modified when repulsive colloid forces are
present.

As the interaction well deepens the total viscosity likewise increésesusethe
contribution of the Hookean spring coat viscosﬁ?R, also increases. Table Il shows the
value of the total viscosity and the contribution from the Hookean spring foamse
calculated from the virial Eq(5)] at Pe = 1.0 (data taken from Fig. )3 Therefore, the
mechanisifs) that gives rise to the enhanced viscous response, in the shear thinning
regime, experienced by those systems that include attractive forces, arises from a com-
plex interplay between the attractive forces and the surface spring coats.

The depletion forces and the hydrodynamic forces contribute negligibly, in compari-
son to the Hookean term, to the computed viscosity during shear thinning. The general
trend fornf A'is to become less negative with increasing shear rate, Whe}féaecomes
less negative during shear thinning and increasingly positive as the shear rate is increased
further.

Beyond the shear thinning regimege > 10, the dominant contribution to the total
viscosity now comes from the hydrodynamic componaHt (see inset to Fig. ¥ At
Pe = 100 nrH > nfR > |7]fA|. This transition in viscous contributions coincides with
the structural rearrangements that lead to an ordered gbesd-ig. 6 at high shear rates
(Pe = 100). At these high shear rates the aggregating forces are negligible in compari-
son to the shear forces such that the system may be regarded as a hard sphere system and
so we see ordered structures under fl@wvown in Fig. 6, likewise simulations of hard
spheregPhunget al. (1996]. The onset of this regime is suppresgedcurs at higher
shear rateéscompared to hard spheres without aggregating forces. At higher shear rates
still, Pe = 1000, shear thickening is observed. The hydrodynamic contribution to the
viscosity increases further and the hydrodynamically dominated flow regime gives way to
hydrodynamic clustering.

In an effort to gain insight into the microstructural response of the system as it flows,
we show several configuration snapshots and associated structure data below. We restrict
this analysis to a system &i. = 0.50, where the interaction potential minimum is set to
Umin = 9 kgT. The microstructural pictures in Figs. 5 and 6 show the instantaneous
particle configuration snapshots of a 700 particle system, spheres draivsize for
clarity, whose centers lie within the central box of the periodic system. The correspond-
ing intensity datd (k) at the same shear rate are also plotted to provide a comparison.
Herel (k) is generated as an ensemble average over many particle configurations and is
thus to be regarded as time averaged in the steady state. In the computdijkp, dhe
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FIG. 5. Instantaneous configuration snapshot and the correspondi)g of a 700 particle,¢. = 0.50,

Umin = 9kgT, system sheared &e = 0.01, looking in;(a) the shear gradient-vorticity plane, atig) the shear
gradient-flow plane.

wave numbelk is restricted due to the periodic boundaries. In dimensionless units, the
lowest wave number accessiblekid = 2#/L, for box dimensiorL. For a 700 particle
system atp. = 0.50,L = 9.0.

We view the data in two different directions and at two different shear rates. Figure 5
shows the shapshots ah(k) at a low shear rat€e = 0.01—this system is undergoing
shear thinning—in botha) the shear gradient-vorticity plandéooking down the flow
direction and (b) the shear gradient-flow plan@ooking down the vorticity axis
Whereas in Fig. 6 we picture a system at a high shearRate= 100.0 in the(a) shear
gradient-vorticity plane and th@) shear gradient-flow plane.

At the lower shear rat®e = 0.01 in Fig. 5, the snapshots and intensity data indicate
no obvious ordering in either plane. For these concentrated systems, particle ordering is
not a feature of shear thinning, and so other mechanisms must be responsible for the
observed rheological behavipBilbert (1998, Farr (1998].
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FIG. 6. Instantaneous configuration snapshot &@id) of a 700 particle,¢p = 0.50 system sheared Bte
= 100.0, looking in;(a) the shear gradient-vorticity plane, atig) the shear gradient-flow plane.

The noticeable feature is a dominant intensity peak seen in Figisabd §b). These
peaks suggest correlations between particles or clusters of particles. The position of the
peak lies at a lower value &fthan the expected nearest neighbor, first coordination shell
(usually aroundkd = 27r), and is commonly known agre peak However, a study of
the corresponding structure fact®fk) (not shown herg[Silbert(1998], shows that the
bulk structure takes on a form of liquid-like, short range orpless this pre peak.

At high shear rates, data shown in Fig. 6, the system exhibits signs of order. We see
that the ordered state, a hexagonally string pack arrangement, is more clearly seen in Fig.
6(a), looking down the flow direction. The correspondihg) plot correlates with this
snapshot, showing the emergence of Bragg-like peaks in this plane. Although the con-
figuration image in Fig. @) does not display the same degree of orderiflg) indicates
that the system does show signs of order in gradient-flow plane also. The correlation
ridges and peaks here are due to intra- and inter-string correlations.
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Ordering under shear is known in hard sphere systems where there is some experi-
mental evidence suggesting a regime of ordered fléwkerson (1990, Clarke et al.
(19981, and also in oscillatory shear experimefttaw et al. (1998]. Shear flow simu-
lations of hard sphere colloidal systefithunget al. (1996 ] and atomic systenisHeyes
and Mitchell (1995] report ordering at moderate to high shear rates. At high shear rates
the aggregating system behaves as a hard sphere system: shear induced ordering is a
feature of concentrated systems. However, we make the following qualification: shear
ordering for aggregating systems appears at much higher shear rates than for equivalent
hard sphere systems. Although shear ordering is a feature of concentrated colloids, the
suspicion remains that thenhancedordering seen in simulations in general is, in part,
due to system size effects. Simulations of the high-shear behavior of electrostatically
stabilized system§Catherall(1998] show that as the box size variésom a simple
cubic volume to a larger rectangular sysjemegions exhibiting different types of order
develop, and the percolating string clusters, as observed in Fig. 6, actually break into
separate strings for the case of longer boxes.

Nevertheless, the calculations here provide indications of a shear induced disorder—
order phase transition in concentratadgregatedolloidal suspensions. From a theoret-
ical point of view, the “field” is the imposed shear rate and, hence, the “order param-
eter” will have some dependence on this quantity. Theoretical attempts exist that model
phase transitions in colloids under shébtorin and Ronis(1996]. These use field-
theoretic techniques at a more coarse-grained level than, say, a particulate description, to
characterize the order parameter and its dependence on the shear rate. However, a general
understanding of these nonequilibrium transitions to order is still lacking at a more
discrete level.

C. Normal stresses

If the stress tensar is related to an equivalent pressure tensor througk, — P, the
diagonal components af are only defined up to an arbitrary constant. The more useful
parameters determined from experiment are linear combinations of these diagonal
components—the normal stress differences. The first and the second normal stress dif-
ferences, denoted by, andN», respectively, are defined in E), following the usual
convention(see[Barneset al. (1989], for example

Ny = oyy— Oyy

®

N2 = O'yy_ Ozz7.

The benefit of the simulation procedure allows the exact determination of the diagonal
components of the stress. Thus it is possible to understand the behaviowgf tithout
resorting to inferring their behavior from related results.

N1 andN, are plotted in Fig. 7, covering the full rheological ran@s in Fig. 3. The
values ofN1 and N, in the shear thinning regime fluctuate erratically close to zero,
similar to the behavior in hard sphere systgiRbunget al. (1996]. The inset empha-
sises this region. The behavior during shear thinning is rather perplexing as we have
already seen that the viscosity of the aggregating system is greatly enhanced over a hard
sphere system. However, the fact that remains close to zero in this regime indicates
that the structures forming in the bulk are either homogeneous throughout, or, possibly,
elongated rod-like structures form along the flow-compression direction.

Beyond the shear thinning regim@ge = 10, bothN; andN, go negative, indicating
a transition away from pure shear thinning behavior. However, upon the onset of order at
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FIG. 7. N1 and N, for the 200 particle system & = 0.50,Uin = 9kgT, as a function of shear rate. The
inset emphasizes the behavior during shear thinning and the gradual transition to an ordered phasePa higher

higher shear rates stilRe > 50, theNy become increasingly positive unhl; drops to
a large negative value coinciding with the first signs of shear thickening.
In Fig. 8 we decompose the normal stress differences into the normal stregges,
ayy, and o,, computed over the same range of shear rate as in Fig. 7. In the shear
thinning regime thesj; fluctuate around zero and again, beyond the shear thinning re-
gime, the trend is for therj; to go negative. Consequently, tiNy also go negative
because one of the;j; is more negative than the other, not because it is more positive.
From the rheology data in Fig. 3 the attractive forces do not contribute directly to the
viscosity, though it is very clear that the aggregating forces are responsible, in some way,
for the observed viscous enhancement. Therefore we feel it pertinent to plot the compo-
nents of the normal stresses arising from the two colloid forces, the Hookean term and the
depletion ternict. Eq. (5)] denotedr °%€aand 18PN respectivelyhere divided by
Pe). The contributions arising from the hydrodynamic squeeze force are not shown in
Fig. 9 as these data are orders of magnitude smaller than the other ters5S°X&2"is

always negative, we actually plot the magnitutte|°°*®], for convenience as a direct
comparison to the positive depletion contribution.

The Hookean ternwhich is always negatiyeand the depletion terrfwhich is always
positive dominate the normal stresses in the system during the shear thinning regime
even though the forces act over length scales that differ by an order of magnitude. At
high shear rates the hydrodynamic squeeze term becomes comparable to the depletion
term. It is through this picture that we see the relevance of the aggregating forces not

previously realized from the viscosity data in Fig. 3.
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FIG. 8. The three normal stressasyy, andoyy, ando,, for the system at. = 0.50. The inset shows the
shear thinning region in greater detail.

D. Viscosity dependence on volume fraction

There are several phenomenological theories purporting the dependence of the viscos-
ity on volume fraction, many of which originate from the Einstein relation in the dilute
limit [Einstein (1956, #,(¢c) = (1+2.5¢¢). Batchelor and others, s¢klappel and
Brenner(1983, Hunter(1992, Russelet al. (1991)], have made attempts to extend this
relation to higher orders i ; however these are either restricted to the dilute regime or
independently to concentrated regimes. Krie@d72 generalized the Einstein relation
in the concentrated regime, suggesting that the volume fraction dependence relies on the
packing parametgp and correlates as

1
(1— ¢/t

which reduces to the Einstein expression for an ideal, monodisperse colloidal system in
the dilute limit by substituting for théntrinsic viscosity] ] = 2.5.

Integral pair theories for hard sphere colloids with Brownian forces have been used to
obtain a functional relatiofiBrady (1993, Lionberger and Russ€ll997)]. Generally,
these suggest that the stress in the system will diverge with volume fraction like (1
- ¢C/¢max)_2. Here the packing parametplis equal to the maximum packing fraction
for spherespmax-

In Fig. 10 the variation in viscosity is computed as a function of colloid volume
fraction, 0.47< ¢. < 0.57, repeated at several shear rates, &0Re < 10.0, with the

Ui
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FIG. 9. The depletion contribution and the magnitude of the Hookean contribution to the stress are compared

for, (& oxx, (b) oyy, (¢) 0;;. Each picture has the same axes,although this is only shove) for conve-
nience.

aim of determining the functional form of the volume fraction dependence of the viscos-
ity in the steady state, shear thinning regime. We fit each curve to the fprm (a
+bee) " B. The value forB which best correlates the data sets is found to be

B = 1.0+10%.

Rearranging the coefficients we find thatcan be related tg through the following
equation:

(o) = B=10 C)

k
(1_¢c/¢max)ﬁ,

and we identify the coefficienp,ax With the volume fraction of maximum random close
packing computed here to by, = 0.64+0.02.
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FIG. 10. Viscosity dependence afi. measured at several shear rafes:= 0.01, 0.1, 1.0, 10.0. Each data set
is fitted to the curvey, = (at+begpe) L.

Although the value of3 = 1.0 computed here is not the expected value as mentioned
above (one might expeciB = 2.0), recent work by Brady(1993 argues that in the
presence of colloid forces the divergence should go Bke 1.0, though the difference
between fitting eitheB = 1.0 or 8 = 2.0 is small over this range of volume fraction.

The coefficientk in the numerator of Eq(9) is independent of colloid concentration
¢¢, and contains the dependence on shear rate and the interaction pdtemsisdg the
potential well depth will alter the viscous respori&uscall et al. (1993]. The depen-
dence of the viscosity on the interaction potential may be characterized by the value of
the depleting polymer concentratiapy,, or similarly the depth of the potential well
Umin- The potential minimaJ i, is linear in ¢, and follows an empirical relation:
Umin = 13.0¢p.

We also find that the scaling of the viscosity ¢g is given by a power law relation

() = &' ¢y = KUy, N = 0.87+ .03, (10)

Buscallet al. (1993 were able to provide a tentative expression based on their experi-
mental investigations on depletion-flocculated system&.at 0.40. They found that the
measured viscosity similarly scales as a power law with variations in the depletent con-
centration.

For the pseudo Lennard-Jones-type systems we study, we feel that in the regime of
interest, moderately aggregating systems, the effect of the attractive forces enter through
the strength of the interaction potential and so we choose to characterize the relation Eq.
(10) in terms ofU yin, as this allows a more general approach. The coeffiaiéatfound
to be unity, within errorx = 1.0+=10%, and so we determine the dependence(Hd).
to be,  (Umin) = Uﬁ]in. Although we have not yet investigated, we anticipate the scal-
ing of Eq.(10) must break down at small potentials when aggregating forces are smaller
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FIG. 11. Rheology of aggregated systems in the concentrated regime <047 < 0.57. Viscosity 7, vs
shear ratd’e in dimensionless units. The inset shows the moderate-high shear rate region.

thankgT, and the system and its rheology will reduce to that of hard spheres, and also at
very large potentials, where the systems may effectively become glassy.

E. Power law, shear thinning colloids

The rheology of aggregated systems over a range of colloid volume fraction in the
concentrated regime, 0.47 ¢, < 0.57, is shown in Fig. 11. All simulations were per-
formed on 200 particle system& (= 6d), interacting through squeeze hydrodynamics
(Brownian forces were switched ¢ffHookean spring forces, and an aggregating poten-
tial set toU,in = 9 kgT. As expected, all systems exhibit extreme shear thinning that
extends over many decadesRe, until apparently leveling upon the onset of the second
Newtonian(pseudo} plateau at high shear rates. However, the inset in Fig. 11 shows that
there is a trend with increasing volume fraction, for the systems to display rather peculiar
behavior at moderate-high shear rates. In these cases the viscosity appears to jump, quite
dramatically, to lower values to such an extent that the viscosiBeat 250.0 for ¢

= 0.57 is lower than that fop. = 0.47. We attribute this anomalous behavior to shear
ordering effects which become increasingly prominent at highefor the systems sizes
simulated here. We suspect that the degree of spontaneous ordering observed here would
not be so pronounced for larger systems.

The data presented in Fig. 11 show that all systems show a region of power law-like
shear thinning between, say 0.061Pe < 10.0. Therefore in an attempt to characterize
the rheology, we find a phenomenological relation that correlates the data in the shear
thinning regime. There are numerous constitutive relations, either semiempirical or phe-
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TABLE IIl. A comparison of the ratio of the viscosities when the system
is purely shear thinningy,(Pe = 0.01)/5,(Pe = 0.10), and when the
system is crossing over to an ordered state of floy(Pe

= 10.0)/9;(Pe = 100.0).

n(Pe=0.01) 7 (Pe=10.0
be 7 (Pe = 0.10 7 (Pe = 100.0
0.47 6.4 1.61
0.49 6.8 1.9
0.50 6.6 2.1
0.53 5.5 1.7
0.55 6.5 1.8
0.57 6.4 4.4

nomenological, relating the dependence of the viscosity on the shedBeateeset al.
(1989, Hunter(1992, Russelet al. (1991)]. As an initial guess to describe the constitu-
tive relation, one might expect that the rheology would obey the well-known Hershel-
Bulkley relation or the Cross mod¢Barneset al. (1989, Hunter (1992]. However,
because we do not shear at low enough shear rates we are unable to detgymire
alternative relation proposed by SiskBarneset al. (1989], relates the measured vis-
cosity to the shear rate and the infinite-shear plateau value

= = Ky 4, (11)

in which the shear thinning exponeatis defined. In this relation, however, the constant

K is undetermined and is usually fitted empirically to the data. In this first instance we do
not try to provide any theoretical or semiempirical justification for the fit, as used by
Baxter-Drayton and Brady1997, for example, as we are merely concerned with a
purely phenomenological relation, though we do not discount the fact that other relations
may be used to correlate the data.

In referring to Eq.(11), 7. is considered to be a well-defined value, and reflects the
fact that, say, the system has reached a well-defined state of flow. However, we have seen
that the simulations do not necessarily provide a reliable estimatg, ofAlso, from the
analysis of the normal stress differences¢at= 0.50 (see Fig. 7, it is apparent that
there exists a crossover region between the power law-like, shear thinning regime and the
onset of the ordered phases at high shear rates.

Clearly the shear thinning region, where the viscosity falls significantly with increas-
ing shear rate, is due to a different rheological mechanism than the high shear region
where the change in viscosity is minimal. We highlight this with the data in Table IlI.
Therefore, the power law behavior must be differentiated from the nonpower law regime,
hence we feel the value of.. should be chosen to bihe equivalent infinite shear
viscosity of the second Newtonian plateau if it were to be well defindde simulations.

Recalling that the viscosity is dominated by the contribution from the hydrodynamic
forces(nrH in Fig. 4) at the higher shear rates, we may proceed by assuming that the
systems behave as hard spheres in this high shear regime. We would therefore expect the
value of %, to correlate like hard spheres. de Kraifal. (1985 managed to correlatg,
for hard sphere systems over the full range of volume fractions, relatingdit taia

e = (1= ¢0.7D 2. (12)
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FIG. 12. Rheology data rescaled according to EtB) showing approximate universal shear thinning behavior
for aggregated systems in the concentrated regime: log—log plot. Stope0.84+0.01.

The value 0.71, assumes that the valuepgfderives from the well-defined flow of the
systems in an ordered face-centered-cubic structure.

Using the dimensionless parameters in the simulation, the Sisko relation may be re-
written as

1. = KPe % (13

such that the value of., (which is nondimensionalizeds now given by Eq(12). The
constantk, in Eq. (13), can only account for those parameters other than the shear rate:
these can only bé. and the value of the interaction potential in the current study. We
therefore write K = K1K,, and setK; = K(¢¢) = (1— de/dmax) S and K,

= K(Upin) = Un);in from our previously determined quantities in E¢9) and (10),
respectively.

We define the power law shear thinning region to be the subset of data of the rheology
curve that conforms to Eq13) for which 7. is defined in Eq.(12). Points on the
rheology curve not deemed to be of power law type are then omitted from being related
through Eq.(13). In rescaling the viscosity with respect to the volume fraction depen-
dence of Eq(9), on the log—log plot of Fig. 12, we find that the rheology data, for the
majority of the shear thinning flow, collapse onto a single master curve.

Therefore in the context of our flow simulations, concentrated aggregated colloids
exhibit power law, shear thinning that is universal with respect to volume fraction in the
concentrated regim@ip to the value ofy.,). We see that the deviation away from power
law universality occurs arounBe = 10.0, the same region at which the normal stress
differences in Fig. 4 also deviated from linear behavior. The rheology may thus be
characterized as power law up to moderate shear rates, but there then exists a transition
to a different mechanism of flow eventually leading to ordered phases at high shear rates.

The slope of the line in Fig. 12 provides the value of the shear thinning expenent
thus fully characterizing the rheology of the fluid. The averaged value is calculated to be,
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a = 0.84-0.01. The value of this exponent is very close to the value estimated from
experimental data on depletion-flocculated suspensiong.at 0.40 [Buscall et al.
(1993], where the exponent is calculated to bEBuscallet al.(1993)] = 0.83. The
value ofa is also in the region of that obtained from shear experiments of colloidal gels,
albeit at lower colloid volume fractions circa 25%, by Verdeinal. (1996 and similarly
Rueb and Zukoski1997), and also on the shear studies of polymer gatgieous gelatin
[Huang and Sorense(1996] («[Huangand Sorens¢h996] = 0.8+0.05). Verduin

et al. (1996 report the shear thinning exponent as= 0.77, at weaker potentials, but
dropping to 0.43 at stronger potentials. From the work by Rueb and Zukbs8v), the
shear thinning exponent can be crudely estimated tarbe, 0.7.

We highlight the fact that the value afis equal toa within error, and so we suggest
that in this approximation. = « = 0.84. A recent kinetic model of the rheologfyarr
(1998 ] shows that through simple scaling arguments the viscosity should scale with the
interaction potential as a power law, with the same shear thinning exponent.

We may thus write out the fullnondimensionalizedconstitutive relation obeyed by
our aggregated colloidal systems that is valid in the shear thinning regime

Uﬁ\in 1

77r(PG,¢>C,Umin) = mPe +W1 a = 0.84:0.01, (14

Nl = 0.0

15
N, = 0.0. =
The behavior at very low shear rates remains to be studied. However, we note that a
generalization of the Eyring theory has been proposed for this redaeter-Drayton
and Brady(1997)].

F. Ordered states at high shear rates

We also present a brief study on ordered states at high shear rates for a range of
volume fractions. In Fig. 13 we view patrticle configuration snapshots of 200 patrticle
systems, with the spheres drawn half size for clarity, in the range,9.4¢ < 0.57
sheared aPe = 100. We restrict this to the high shear rate region of the rheology curve
as the shear thinning regime is understood to behave independently of volume fraction.

Viewing the configurations in the gradient-vorticity plane, that is, looking down the
flow direction, the system undergoes several transitions. At the lowest concentration
studied¢, = 0.47 a semiordered phase exists, whereby particle strings exist in tandem
with disordered regions. A& increases, however, the hexagonally packed string phase
emerges ath. = 0.50 and further transitions occur, in an apparently continuous manner,
into an intermediate string/layer phase & = 0.55, finally reaching a truly ordered
layered phase ap. = 0.57.

We imagine that the geometrical constraints on such concentrated systems will even-
tually result in the emergence of strong ordering in all planes, and indeed we have shown
here a first qualitative indication that shear induced phase transitions between ordered
particle structures exist as a function of volume fract{essentially these aggregating
systems behave as hard spheres at these shegr faigsther with our earlier observa-
tions at¢. = 0.50, we expect that any theoretical considerations must take into account
the dependence of shear raed volume fraction when explaining the shear induced
transitions in concentrated colloids. To reiterate a point of caution, since this particular
study has been restricted to 200 particle systems, it is still unclear how responsive order-
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FIG. 13. Configuration snapshots of a 200 particle system looking down the flow direction sheaPed at
= 100 for; (a) ¢ = 0.47,(b) ¢c = 0.50,(c) ¢c = 0.55, and(d) ¢. = 0.57.

ing is to size effects. However, simulations which neglect hydrodynamic interactions
observe different types of ordering consisting of gross layered phases at lower concen-
trations (¢ = 0.30)[Melrose and Heye€l993] and are deemed slightly less physically
accurate.

G. Comparison with experiment

We are currently unaware of any scattering experiments on concentrated, aggregated
systems under flow. The experiments by Verdetral. (1996 and[Rueb and Zukoski
(1997 ] are concerned with colloidal gel-like systems at lower volume fractions than of
interest here.

Verduin et al. (1996 carried out work on a system which is regarded as a model
system foradhesive hard sphere dispersidgngerduin and Dhon{1995]. Their system
of spherical, stearyl coated, silica particlesfat= 0.25 provides a crude comparison to
the simulations presented here. We compare, with caution, structural data with our higher
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volume fraction data. We have previously compared our rheology [&ilkert et al.
(1997 ] with experimental results for depletion-flocculated systems at 40% volume frac-
tion [Buscallet al. (1993].

It is still unclear how one should regard microstructures at moderate concentrations.
At lower volume fractions, the system can be described in terms of open, fractal-like
networks[Potanin and Russ€1996, Potaninet al. (1995]. However, as the concentra-
tion increases the system becomes increasingly packed and so the notion of “open”
becomes less meaningful. A, = 0.25 it may be more appropriate to make compari-
sons with the concentrated regime.

In Fig. 14 we compare the scattering data of the simulation model of an aggregating
system atp. = 0.50 Unin = 9kgT) and the experimentally observed scattering pattern
for a gel-forming system a®. = 0.25. The data are viewed in the flow-vorticity plane
(i.e., looking down the gradient directipThe top three fully shaded plots bfk) are the
simulation data aPe = 0.05, 5.0, and 10.0. Thexperimentaldata[reproduced from
Verduin et al. (1996] is shown as th€lower four) mesh plots. The shear rates may be
nondimensionalized and converted into simulation units using the details of the system
from Verduinet al. (1996: Pe = 0.0, 0.07, 5.9, and 11.1. An approximate scale along
the k axes, in units of 1®m~1, is shown.

Large scattering peaks, with the peak points lying roughly parallel to the flow direc-
tion, are a feature of both the simulation and the experimental systems. However, the
peaks are fairly broad, and thus orientation of the peaks themselves cannot be uniquely
identified. The amplitudes of the peaks decrease, moderately, with increasing shear rate
as we move from the purely shear thinning regime into the transitional region of the
rheology curve(cf. Fig. 3.

We have not attempted to compare data at zero-shear rate in Fig. 14 as the zero-shear
system, in particular, is largely dependent on preparatiistory). For the gel-forming
system of Verduiret al. (1996, the zero-shear system is prepared at high temperatures
and then cooled to the experimental temperatitbout shearing Dhont (1998]. How-
ever, the zero-shear system in Verdeinal. (1996 exhibits isotropic scattering peaks
which suggest long range structure in the quiescent gel.

Therefore we find that without any detailed knowledge of the functional form of the
interaction potential of the experimental systéother than the fact they represent gel-
forming systemp our simulation data capture some of the qualitative features of the
experimental system; the maximum pre-peak heights(k) decrease with increasing
shear rate, over the range of shear rates studied, from left to right in the figure.

V. CONCLUSIONS

The rheology of aggregating and nonaggregating systems has been compared over a
wide range in shear rate in the concentrated regime. The aggregating system is seen to
experience a large viscous enhancement over the equivalent hard sphere system during
the shear thinning regime. Although the attractive forces are not explicitly responsible for
this modified rheological behavior, we find that the reason for this enhancement is mani-
fested in the increased viscous contribution from the repulsive colloid forces when at-
tractive forces are present. The microstructural mechanisms responsible for shear thin-
ning rheology must be dominated by the close approach of particle surfaces through
which the surface coat interactions contribute significantly to the shear stress. We also
find that the transition to order at high shear rates is inhibited due to the aggregating
forces, though the particular type of order achieved appears to be dependent on volume
fraction in this concentrated regime.
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Simulation Data

Flow

FIG. 14. Comparison betweeh(k) from the simulation scattering dattop three shaded formatéor Pe
= 0.05, 5.0, and 10.0, with experimentally determined light-scattering stdd@tom four mesh plots. Re-
printed with permission from Langmuit2, 2953 (1996, Copyright 1996 American Chemical Socigiyn a
model power law, shear thinning adhesive colloidal systen®eat= 0.0, 0.07, 5.9, and 11.1.
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The aggregating system exhibits power law shear thinning behavior over a wide range
of shear rates. The normal stress differences vary very (dthel remain close to zero
during the shear thinning regime. This power law behavior is found to be universal in the
context of the simulations at high colloid concentrations, and the value of the power law
index computed here is comparable to values from similar experimental systems at com-
parable volume fractions. In this regime, the approximate functional dependencies of the
viscosity on both the colloid volume fractions and the strength of the interaction potential
were determined. Consequently, a full constitutive equation is given for the system in the
shear thinning regime. All; andN, are hard to measure in experiment, we hope that
Eqg. (15 may provide a useful constitutive relation for continuum models.

Configuration snapshots and computed scattering data of the system suggest that dur-
ing the shear thinning regime, the system microstructure exhibits liquid-like short range
order. However, the presence of pre peaks at small values of wave nuxaber,1.0,
which are only seen during shear thinning systems, indicates the presence of intermediate
range order due to longer ranged correlations. These are so far undetefiRiledt
(1998], but such features are not observed in shear thinning hard sgltéeges and
Mitchell (1995]. However, a cautious comparison with recent experimental work shows
that the simulation data do capture some of the qualitative features observed in experi-
mental scattering data on systems which may crudely be considered a close comparison.
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