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Abstract 1 

 Iron (Fe) has long been a recognized physiological requirement for life, yet its role for a 2 

broad diversity of microorganisms persisting in water, soils, and sediments extends well-beyond 3 

a nutritional necessity.  Microorganisms from within both the domain Archaea and Bacteria are 4 

capable of metabolically exploiting the favorable redox potential between the Fe(III)/Fe(II) 5 

couple.  Identification of these microbial metabolisms has recognized that reduced Fe, can serve 6 

as an energy source for lithotrophic Fe-oxidizing microorganisms (FOM) under both oxic and 7 

anoxic conditions.  Alternatively, oxidized Fe can serve as a terminal electron acceptor under 8 

anaerobic conditions for lithotrophic and heterotrophic Fe-reducing microorganisms (FRM).  9 

Given that Fe is the fourth most abundant element in the Earth’s crust, iron redox reactions have 10 

the potential to support a significant fraction of microbial biomass.  The broad diversity of 11 

environments supporting FOM and FRM display an extreme range of chemical and physical 12 

conditions.  As such, biological iron apportionment has been described as one of the most 13 

ancient forms of microbial metabolisms on earth as well as a conceivable extraterrestrial 14 

metabolism on other iron mineral rich planets such as Mars.  The contribution of microbially-15 

catalyzed iron redox and phase transformation to soils and sedimentary environments can 16 

profoundly affect the geochemistry and mineralogy of these environments.  Furthermore the 17 

metabolic versatility of FOM and FRM has resulted in the application of several biological 18 

strategies in order to remediate organic and metal/radionuclide contaminated environments as 19 

well as harvest energy.  20 

 21 
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Iron Cycling:  The microbial redox workout 1 

 At circumneutral (~pH 7) and greater pH values iron primarily exists as insoluble, solid-2 

phase minerals in the divalent ferrous or trivalent ferric oxidation states (denoted as Fe(II) and 3 

Fe(III) respectively)1
.  The solubility of Fe(III) increases with decreasing pH values2.  Below pH 4 

4.0, Fe(II) primarily exists as an aqueous species even in the presence of oxygen.  The 5 

biogeochemical role of FOM in acidic environments has been well established (refer to REF. 3 6 

for review) (Box 1).  Given the reactivity of iron oxide mineral surfaces, microbial Fe redox 7 

cycling can significantly affect the geochemistry of hydromorphic soils and sediments leading to 8 

the mineralization of organic matter, mineral dissolution and weathering, the formation of 9 

geologically significant minerals, mobilization or immobilization of various anions and cations 10 

including contaminants1,4-7.  Thus the redox transition between the Fe(II) and Fe(III) valence 11 

states plays a fundamental role in modern environmental biogeochemistry and was likely an 12 

important biogeochemical process on early earth.   13 

In neoteric environmental systems in the anoxic zone at pH >4.0, Fe(III) oxides provide 14 

an electron sink and are reduced either chemically or biologically.  Prior to the recognition of 15 

microbially mediated iron redox reactions, abiotic mechanisms were thought to control iron 16 

redox chemistry8.  Despite their insoluble nature, Fe(III) oxide minerals can still serve as a 17 

terminal electron acceptor for the microbial oxidation of organic matter and/or H2 (FIG. 1).  It is 18 

now established that microbial catalysis primarily controls Fe(III) reduction in non-sulfidogenic 19 

sedimentary environments9-11.  In environments where active microbial sulfate reduction is 20 

occurring, biogenic H2S can result in the abiotic reduction of a proportion of the Fe(III).  21 

However the potential for enzymatic Fe(III) reduction persists, as studies demonstrated that as 22 

much as 75% of the organic matter oxidized in marine sediments was coupled to enzymatic 23 

Fe(III) reduction12,13.  Ammonium as an electron donor may also play a role in Fe(III) 24 
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reduction14-16, however direct pure culture evidence is required to support this observation.  The 1 

activity of FRM results in the generation of aqueous Fe(II) (Fe(II)aq) as well as solid-phase Fe(II) 2 

(Fe(II)s) bearing minerals (i.e. siderite and vivianite) including geologically significant mixed 3 

valence Fe(II)-Fe(III) minerals such as magnetite and green rust17-19.  The ubiquity of FRM 4 

combined with the elemental abundance of iron in the earth’s crust establishes the global 5 

significance of microbial iron reduction11.   6 

Microbially-mediated Fe(II) oxidation is also known to contribute to a dynamic iron 7 

biogeochemical cycle at circumneutral pH in both oxic and anoxic environments (FIG. 1).  With 8 

the identification of FOM, the fate of Fe(II) in environmental systems is now recognized to 9 

undergo both biological and abiotic reactions.  Abiotic oxidation of Fe(II)aq may be mediated 10 

through a reaction with oxidized manganese (Mn(IV)) species or by the diffusion of Fe(II) into 11 

an oxic environment subsequently reacting with molecular oxygen (O2).   Benthic bioturbation 12 

by macrophytes and macrofauna can induce particle mixing and aeration resulting in the 13 

subsequent oxidation of Fe(II)aq and Fe(II)s
20-25.  However, microbially-mediated oxidative 14 

processes in direct association with bioturbation have not been studied to any significant degree 15 

with studies limited to the rhizosphere26-28 .  Microaerophilic FOM capable of competing with 16 

the abiotic oxidation kinetics between O2 and Fe(II) have been shown to contribute to Fe cycling 17 

in the oxic environment coupling this metabolism to growth29-33.     18 

While aerobic microbial oxidation of Fe(II) has been recognized for decades, the recent 19 

identification of anaerobic Fe(II) bio-oxidation closed a missing gap in the iron redox cycle34,35.  20 

Recent evidence indicates that anaerobic Fe(II) oxidation can contribute to a dynamic anaerobic 21 

iron redox cycle36-38 in addition to soil and sediment biogeochemistry, mineralogy, and heavy 22 

metal and radionuclide immobilization6,7,38,39.  In environments devoid of oxygen, microbial 23 
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Fe(II) oxidation coupled to the reduction of nitrate, perchlorate, and chlorate (FIG. 1) has been 1 

demonstrated35,38,40.  These FOM are capable of oxidizing solid-phase Fe(II)6,39,41,42 as well as 2 

Fe(II) associated with structural Fe in minerals such as almandine, an iron aluminum 3 

silicate6,43,44.  In zones of sufficient light penetration, Fe(II) oxidizing phototrophic bacteria are 4 

capable of oxidizing Fe(II) generating Fe(III) (FIG. 1).  FOM are ubiquitous and have been 5 

identified in numerous environments.  Anaerobic, biogenically formed Fe(III) oxides potentially 6 

serve as a terminal electron acceptor for FRM perpetuating a dynamic microbially-mediated Fe 7 

iron redox cycle (FIG. 1). 8 
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Microbial Iron(II) Oxidation  1 

Aerobic    2 

 The microbial oxidation of Fe(II) coupled to the reduction of O2 in environments of 3 

acidic and circumneutral pH values has been recognized for more than a century (REF. 29,45 4 

and references therein).  Yet, despite the historical knowledge of FOM , the geological 5 

significance of aerobic Fe(II) oxidation had been discounted based on the rapid abiotic Fe(II) 6 

oxidation rate coupled to the reduction of O2
5.  The enrichment of microaerophilic FOM using 7 

opposing diffusion Fe(II)-O2 gradient systems has expanded our knowledge of aerobic, 8 

neutrophilic FOM beyond Gallionella sp. and Leptothrix sp. isolating Alpha-, Beta-, and 9 

Gammaproteobacteria as FOM30,33,46,47.  Environments potentially supporting aerobic, 10 

neutrophilic Fe(II) oxidation are stream sediments, groundwater Fe seeps, wetland surface 11 

sediments, sediments associated with the rhizosphere, cave walls, irrigation ditches, subsurface 12 

bore holes, municipal and industrial water distribution systems, deep ocean basalt, as well as 13 

hydrothermal vents26,33,48,49.  These microaerophilic FOM are able to successfully compete with 14 

the kinetics of abiotic Fe(II) oxidation in these environments.  Although the quantitative 15 

significance of this microbial metabolic process in terms of accelerating Fe(II) oxidation rates is 16 

subject to interpretation, unequivocal evidence demonstrates that FOM are capable of conserving 17 

energy from this process and converting inorganic carbon, CO2, into biomass30,33,46.  Aerobic 18 

Fe(II) oxidation not only plays a role in Fe redox reactions at the oxic/anoxic interface but also 19 

influences mineral weathering in the environment33,50.   20 

 21 
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Anaerobic 1 

  Before O2 was available as an oxidant in the Fe(II)-rich Precambrian environment, 2 

anaerobic microbial oxidation of Fe(II) potentially provided an early respiratory metabolism 3 

contributing to the precipitation of iron oxide minerals including magnetite found in Archean 4 

banded iron formations (BIF)6,34,51,52.  The reduction potential of the Fe(III)/Fe(II) couple is 5 

sufficient to provide reducing power between bacterial photosystems or alternative terminal 6 

electron acceptors involved in respiratory processes (FIG. 2) in order to sustain microbial 7 

growth.  Within the last decade Fe(II) oxidation mediated by Archaea and Bacteria has been 8 

described in environments devoid of oxygen at circumneutral pH34,35,51.   9 

(i)  Seeing the light – Anaerobic, phototrophic oxidation of Fe(II): 10 

 Photoautotrophic, anaerobic Fe(II) oxidation was the first demonstration of microbially-11 

mediated oxidation of Fe(II) in anoxic environments34.  These FOM oxidize Fe(II), utilizing light 12 

energy to fix CO2 into biomass (Eq. 1) 13 

HCO3
- + 4Fe(II) + 10H2O ! < CH2O > + 4Fe(OH)3 + 7H+ (Eq. 1) 14 

 15 
Although phototrophic FOM described within the domain Bacteria are phylogenetically diverse 16 

(FIG. 3), to date an archeon capable of this metabolism has not been identified.  Several purple 17 

and green anoxygenic, photosynthetic Fe(II) oxidizing bacteria have been isolated from 18 

freshwater and marine environments and described in pure culture34,52-56.  With the exception of 19 

Rhodomicrobium vannielii, these phototrophic FOM are capable of completely oxidizing soluble 20 

Fe(II)aq to Fe(III).  Incomplete Fe(II) oxidation by R. vannielii has been attributed to encrustation 21 

of the cell with biogenic Fe(III) oxides inhibiting further metabolic activity34,54.  The production 22 

of low molecular weight compounds solubilizing biogenic Fe(III) has been suggested as a 23 

mechanism for preventing cell encrustation in cultures of other phototrophic FOM including 24 

Rhodovulum robiginosum and Chlorobium ferrooxidans
53,57.  In contrast to observations made 25 
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with R. vannielii
57, concentrations of soluble Fe(II) and Fe(III) in spent culture media of R. 1 

robiginosum and C. ferrooxidans far exceeded the amount predicted by solubility constants and 2 

an uninoculated control57.  However, a subsequent study failed to identify significant evidence 3 

supporting the direct role of organic compounds or chelators complexing Fe when R. 4 

robiginosum, C. ferrooxidans, and Thiodictyon sp. strain F4 were grown on Fe(II)aq or solid-5 

phase ferrous sulfide (FeS)58.  As such, it was proposed that Fe(III) was released from the active 6 

cell as an inorganic aqueous complex or colloidal aggregate58.  Nonetheless, a fundamental 7 

difference remains to be explained as to why R. vannielii is subject to cell encrustation while 8 

other phototrophic FOM are not affected by the formation of insoluble Fe(III) oxides.  The 9 

production of compounds capable of solubilizing Fe(III) has profound implications not only for 10 

FOM cellular metabolism but also the dissolution of solid-phase minerals and the release of 11 

soluble Fe as a terminal electron acceptor or as a micronutrient for other aquatic and terrestrial 12 

living organisms.   13 

 Phototrophic Fe(II) oxidation results in the formation of poorly crystalline Fe(III) 14 

oxides59 which subsequently transform into more crystalline Fe(III) oxide minerals, goethite and 15 

lepidocrocite, in the presence of metabolically active FOM58.  However, the significance of 16 

phototrophic Fe(II) oxidation processes in natural terrestrial environments is limited by the 17 

maximum penetration of light to a depth of 200 µm into soil and sediment60.  Furthermore, 18 

recent studies indicate that phototrophic Fe(II) oxidizing bacteria are unable to promote Fe(II) 19 

mineral dissolution and are limited by the mineral solubility58.  Therefore the impact of this 20 

microbial process to Fe redox cycling may be locally significant but may play a minor global 21 

role in contemporary iron biogeochemical cycling in terrestrial environments.   22 
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(ii) Working in the dark - Anaerobic nitrate-dependent Fe(II) oxidation:   1 

 Anaerobic Fe(II) oxidation is not limited to environments exposed to light.  At 2 

circumneutral pH, light independent microbially-mediated oxidation of both soluble and 3 

insoluble Fe(II) coupled to nitrate reduction has been demonstrated in a variety of freshwater and 4 

saline environmental systems, including paddy soil, pond, stream, ditch, brackish lagoon, lake, 5 

wetland, aquifer, hydrothermal, and deep sea sediments6,33,35,38,39,43,51,61-68.  These environmental 6 

systems support abundant nitrate-dependent Fe(II) oxidizing microbial communities in the order 7 

of 1 x 103 to 5 x 108 cells g-1 sediment38,65,66,68,69, potentially contributing to Fe redox cycling.  A 8 

variety of microorganisms in the domain Archaea and Bacteria (FIG. 3), representing an extreme 9 

range of optimal thermal growth conditions (psycrohphilic, mesophilic, to hyperthermophilic) 10 

have been identified.  The ubiquity and diversity of these anaerobic FOM suggests that 11 

metabolic, light-independent reactions such as nitrate-dependent Fe(II) oxidation have the 12 

potential to contribute to anoxic Fe(II) oxidative processes on a global scale provided adequate 13 

concentrations of a suitable electron acceptor are readily available.   14 

 FOM are capable of exploiting the favorable thermodynamics between Fe(OH3)/Fe(II) 15 

(Eh = +0.014) and nitrate reduction redox pairs (NO3
-/!N2, Eh = + 0.713; NO3

-/NO2
-, Eh = + 16 

0.431; NO3
-/NH4

+, Eh = + 0.36) as well as other potential terminal electron acceptors such as 17 

perchlorate and chlorate (ClO4
-/Cl-, Eh = + 0.873; ClO3

-/Cl-, Eh = + 0.616; respectively) (FIG. 18 

2)6,35,38,40,51,67,68.  Several phylogentically diverse mesophilic bacteria have been described as 19 

capable of nitrate-dependent Fe(II) oxidation (FIG. 3), however in most cases growth was either 20 

not associated with this metabolism or was not demonstrated in the absence of an additional 21 

electron donor or organic carbon as an energy source at circumneutral pH6,35,40,43,67,70. 22 

The oxidation of Fe(II), including solid-phase Fe(II) bearing minerals, coupled to nitrate 23 

reduction is energetically favorable at neutral pH and should yield enough energy to support 24 
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carbon fixation and microbial growth.  However, to date autotrophic growth under nitrate-1 

dependent Fe(II) oxidizing conditions has only been demonstrated in two pure culture isolates; a 2 

hyperthermophilic archeon51, and a mesophilic Betaproteobacterium, “Candidatus Cosmobacter 3 

millennium” strain 200268.  Even in the case of a known Fe(II)-oxidizing chemolithoautotrophic 4 

bacterium, Thiobacillus denitrificans, energy conservation directly coupled to nitrate-dependent 5 

metal oxidation, Fe(II) or U(IV), could not be determined as an additional electron donor was 6 

required for metabolic activity to occur71.  Until the recent demonstration of nitrate-dependent 7 

Fe(II) oxidation by Geobacter metallireducens resulting in the production of ammonium38, NO2
- 8 

or N2 were identified as the sole nitrate reduction end-products6,35,51,70.  Growth of FOM capable 9 

of autotrophy or mixotrophy associated with perchlorate/chlorate-dependent Fe(II) oxidation has 10 

not been identified to date.  However, perchlorate/chlorate-dependent Fe(II) oxidizing metabolic 11 

activity is observed under stationary growth phase conditions in cultures of Azospira suillum 12 

strain PS (formerly Dechlorosoma)6,41.  Although perchlorate and chlorate are not considered to 13 

be naturally abundant compounds, their potential to serve as an electron acceptor in 14 

environmental systems cannot be discounted72.  Legal discharge of perchlorate into natural 15 

waters has led to widespread anthropogenic contamination throughout the United States.  Given 16 

the ubiquity of perchlorate reducing bacteria72 and the ability of some of these microorganisms, 17 

specifically Azospira sp. and Dechloromonas sp., to oxidize Fe(II), anaerobic 18 

perchlorate/chlorate-dependent Fe(II) oxidation may impact iron biogeochemical cycling in 19 

environments exposed to contaminated waters.  Further studies are needed to quantify the 20 

potential influence of perchlorate/chlorate-dependent Fe(II) oxidation. 21 
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Doing hard time:  Solid-Phase Microbial Fe(II) Oxidation 1 

In contrast to phototrophic FOM, solid-phase Fe(II) bearing minerals, including surface 2 

bound Fe(II)38,39, crystalline Fe(II) minerals (siderite, magnetite, pyrite, aresnopyrite, and 3 

chromite)6,39, and structural Fe(II) in nesosilicate (almandine and staurolite)6 and phyllosicate 4 

(nontronite)43 minerals are known to be subject to direct nitrate-dependent microbial oxidation.  5 

Although we know that nitrate-dependent FOM play a role in the oxidation of Fe(II) structurally 6 

incorporated into silicate minerals as well as contribute to Fe(II) mineral dissolution, virtually 7 

nothing is known about the mineral structure and stability of the residual material.  The oxidative 8 

dissolution of solid-phase Fe(II) minerals in an anoxic environment presents an additional 9 

mechanism for rock weathering and inducing Fe(III) oxide mineral precipitation in anoxic soils 10 

and sedimentary environments.  To date bio-oxidation products of amorphous solid-phase Fe(II) 11 

minerals have been characterized.  A variety of biogenic Fe(III) oxide minerals, 2-line 12 

ferrihydrite41,61, goethite38, lepidocrocite73, hematite6, as well as mixed phase Fe(II)-Fe(III) 13 

minerals, magnetite, maghemite, and green rust6(K. Weber unpublished data) were identified as 14 

oxidation products.  As a result of this biogenic formation of magnetite, nitrate-dependent Fe(II) 15 

oxidation has been implicated as playing a direct role in the genesis of banded iron formations in 16 

Precambrian Earth6,51.   17 

 18 

Function over Form: Physiology of Fe(II) Oxidation at Circumneutral pH 19 
 Virtually nothing is known regarding the biochemistry or genetic regulation of anaerobic 20 

Fe(II) oxidation at circumneutral pH.  The reduction potential of the myriad of Fe(III)/Fe(II) 21 

redox pairs (range of Eh = -0.314 to +0.014) indicates that Type b, c, or a cytochromes may be 22 

involved in electron transport (FIG. 2).  Reduced minus oxidized difference spectra72 of A. 23 

suillum whole cells anaerobically incubated in the presence of Fe(II) demonstrated the direct 24 
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reduction of the type-c cytochrome content6, implicating the involvement of a type-c cytochrome 1 

in the the transfer of electrons to nitrate under Fe(II) oxidizing conditions.  The demonstrated 2 

capability of some FOM to utilize CO2 as the sole source of carbon requires a CO2 fixation 3 

pathway.  In the case of the archeon, F. placidus, grown on CO2 the reductive acetyl coenzyme A 4 

pathway is expressed, implicating its involvement in in carbon assimilation74.  Interestingly, 5 

genes associated with the reductive pentose phosphate cycle, RuBisCo, were identified in the 6 

finished genome sequence of Dechloromonas aromatica, an Fe(II) oxidizing bacterium capable 7 

of utilizing nitrate, chlorate, or perchlorate as alternative electron acceptors68, however 8 

autotrophic growth associated with Fe(II) oxidation could not be demonstrated and the 9 

conditions under which these genes are expressed remains unidentified (J.D. Coates, 10 

unpublished).  In contrast, PCR amplification of the genomic DNA from “C. millennium” strain 11 

2002, the mesophilic autotrophic nitrate-dependent Fe(II) oxidizing bacterium, with degenerative 12 

RuBisCo primers did not yield a PCR product68.  The CO2 fixation pathway expressed in ”C. 13 

millennium” under nitrate-dependent Fe(II) oxidizing conditions is currently unknown.  14 

Regardless, the availability of genomic sequence information of FOM, D. aromatica, 15 

Marinobacter aquaeolei, G. metallireducens, and T. denitrificans, provides the first opportunity 16 

to aggressively address functional genes and regulatory pathways associated with this 17 

metabolism.  However, other phylogentically and physiologically distinct microorganisms such 18 

as F. placidus, “C. millennium”, and A. suillum which also potentially play a key role in 19 

anaerobic nitrate-dependent Fe(II) oxidation have yet to be genome sequenced. 20 

 21 
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The Other Half – Microbial Iron Reduction 1 

Antiquity of Iron Reduction 2 

 It has been proposed that life emerged on a hot (possibly as high as 140°C -150°C), 3 

Fe(II)-rich early Earth 3.8 billions years ago75,76.   The photochemical generation of Fe(III) and 4 

H2 would have provided an electron acceptor and energy source, respectively, for ancient life 5 

(Eq. 2) (REF. 11,77,78 and references therein).   6 

2 Fe(II) +2 H+ hv! 2 Fe(III) + H2 (2) 7 

As such iron respiration has been proposed as one of the first forms of microbial metabolism to 8 

have evolved preceding the development of oxygen, nitrate, and sulfate respiration79-82.  In 9 

support of this, Fe(III) respiration has been identified in a broad diversity of extant 10 

microorganisms including those most closely related to the last common ancestor81,83.  11 

Extracellular electron transfer to insoluble Fe(III) oxide minerals has been conserved throughout 12 

the hyperthermophilic Archaea81,83-85 and is widely distributed among the Bacteria (FIG. 3)11,82 13 

further suggesting that this is an early metabolism which spread through the microbial domains 14 

throughout evolution.    15 

 16 

A hard rock chord: crystalline Fe(III) oxide reduction 17 

 Poorly crystalline Fe(III) oxide minerals, such as ferrihydrite, readily serve as an electron 18 

acceptor for FRM86.  This is not surprising given the relative energetic favorability of the 19 

reduction of amorphous ferric iron oxides (FIG. 2).  However, iron oxides predominantly exist in 20 

a crystalline phase or as a structural component of clays in modern soils and sedimentary 21 

environments1.  Although the thermodynamic favorability of crystalline Fe(III) oxide mineral 22 

reduction (goethite, hematite, and magnetite) is decreased (FIG. 2), previous studies have 23 

suggested that FRM are capable of living on the energetic edge utilizing the structural43,44,87 or 24 
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crystalline solid-phase Fe(III) as an electron acceptor88-91.  Considerable debate has been put 1 

forward arguing the direct environmental relevance of laboratory studies which have examined 2 

reduction of crystalline Fe minerals under artificially organic and nutrient rich conditions in 3 

order to optimize the growth of FRM11,92.  Glasauer and colleagues (2003) did not observe the 4 

reduction of goethite and hematite in defined minimal media by Shewanella putrefaciens strain 5 

CN32 which is in direct contrast to previous reduction studies conducted with this organism in 6 

nutrient rich media19,90,91.  However the generalization that FRM are unable to reduce crystalline 7 

Fe(III) oxide minerals under nutrient limited conditions is not universal.  Under oligotrophic 8 

culture conditions both a culture of G. metallireducens and a freshwater enrichment culture (1% 9 

vol:vol inoculum) reduced goethite beyond the amorphous Fe(III) oxide content (determined by 10 

0.5 N HCl extraction)38 indicating the possibility for microbial reduction of crystalline Fe(III) 11 

oxides in the environment.                  12 

 13 

A means to an end:  Microbial strategies for reduction of an insoluble electron acceptor 14 

 The insoluble nature of Fe(III) oxide minerals at values above pH 4 creates a metabolic 15 

dilemma for microorganisms utilizing Fe(III) oxides as a respiratory terminal electron acceptor.  16 

A variety of mechanisms have been proposed describing possible strategies utilized by the 17 

microorganisms in order to transfer electrons to the extracellular Fe(III) oxide mineral.   Direct 18 

contact between the cell and the solid-phase Fe(III) oxide mineral was determined as a 19 

requirement for the reduction of insoluble Fe(III) oxides in Geobacter sp.93 (FIG. 4A).  The 20 

formation of flagella and pili had been proposed as the mechanism in which Geobacter sp. 21 

directly attached to the Fe(III) oxide surface94.  Recent evidence indicates that pili are not 22 

required for attachment of Geobacter sp. to the solid-phase Fe(III) oxide surface but rather serve 23 
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as an electrical conduit for the transfer of electrons to insoluble Fe(III) oxides and potentially  1 

other solid-phase terminal electron acceptors95.  The formation of these conductive cellular 2 

“nanowires” expands the accessible spatial area available beyond the cell membrane allowing the 3 

penetration of nanometer pore spaces in soils and sedimentary environments previously thought 4 

physically unavailable to the cell.  The potential for these “nanowires” to create a bridge between 5 

individual cells introduces the possibility of cell to cell communication95, as well as for the cell 6 

attached to the Fe(III) oxide or other electron acceptor to function as an electron shuttle.     7 

 The identification of conductive “nanowires” was apparently exclusive to Geobacter sp. 8 

as pili produced by other metal reducing organisms tested including Shewanella oneidensis were 9 

not conductive95.  However, FRM may not necessarily need to establish direct contact with the 10 

solid-phase surface to reduce Fe(III) oxides as other alternative active mechanisms could be 11 

employed.  Exogenous96 and endogenously produced97-99 soluble external electron shuttles can 12 

be exploited as mediators to complete the transfer of electrons to the solid-phase terminal 13 

electron acceptor (FIG. 4B).  The electron shuttle alleviates the need for the FRM to directly 14 

contact the Fe(III) oxide functioning in a combination of a microbially-catalyzed and abiotic 15 

process where (i) the FRM oxidizes an electron donor coupled to the reduction of the soluble 16 

electron shuttle and (ii) the reduced electron shuttle diffuses and subsequently abiotically donates 17 

electrons to the solid-phase Fe(III) oxide96 (FIG. 4B).  The abiotic regeneration of the oxidized 18 

electron acceptor in part (ii) restarts the cycle (FIG. 4B).   19 

 Redox reactive organic compounds common in soils and sedimentary environments such 20 

as humic acids96, plant exudates100, and antibiotics101 have been identified as electron shuttles.  21 

Although the true significance of these compounds to serve as electron shuttles for microbially-22 

mediated Fe(III) reduction in eutrophic environments is still unknown, their utility in 23 
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oligotrophic environments may be limited due to the low availability of suitable redox reactive 1 

refractory organic substances.  However, the endogenous production of an electron shuttle 2 

recognized in two FRM genera, Shewanella sp.97,99,102 and Geothrix fermentans
98, may further 3 

mitigate the reliance of these FRM on exogenous electron shuttles.  Although the energetic 4 

expense of producing and excreting the redox reactive compounds to the environment would not 5 

yield a competitive advantage in situations of low cell mass, it has been speculated that the 6 

release of electron shuttles in a biofilm community would allocate electron transfer to cells 7 

distant from the substrate surface102.  In addition, the recently identified ubiquitous biological 8 

reoxidation of these diffusing electron shuttles coupled to carbon assimilation in the presence of 9 

a suitable electron acceptor such as nitrate offers the potential for a previously unidentified 10 

symbiotic relationship at the microbial level103,104.   11 

 12 

The iron maidens of rock: Diversity of FRM  13 

 A wide phylogenetic diversity of microorganisms capable of conserving energy coupled 14 

to growth by the dissimilatory reduction of Fe(III) have been identified throughout the domains 15 

Archaea and Bacteria (FIG. 3).   These FRM have been isolated across a vast range of chemical 16 

and physical conditions demonstrating the ubiquity of this microbial metabolism.  From among 17 

these isolated microorganisms, Fe(III) reducing extremophiles such as hyperthermophilic, 18 

thermophilic, psychrophilic, acidophilic, and alkaliphilic Archaea and/or Bacteria have been 19 

described in pure culture83,105-109 (see Lovley et al. 2004 for review11).  One such isolate 20 

surviving in hydrothermal vents has pushed the upper temperature limit for life above 121°C83.  21 

In modern terrestrial and subsurface environments at circumneutral pH microorganisms 22 

identified within the family Geobacteraceae are among the most common and most 23 
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comprehensibly studied FRM (REF. 11 and references therein).  This group of FRM is 1 

considered to play a significant role in dissimilatory Fe(III) reduction and organic matter 2 

oxidation in soils and sedimentary environments.  Outside of the Deltaproteobacteria another 3 

well characterized group of FRM, the Shewanella sp has been identified within the 4 

Gammaproteobacteria.  Although, Shewanella sp  have been isolated from diverse metal 5 

reducing sedimentary environments91,110,111, several studies focused on the recovery of 16S 6 

rDNA sequences representing these FRM in natural Fe(III) reducing environments have not 7 

yielded a positive result38,112-116 suggesting that these microorganisms may only play a minor role 8 

in the reduction of Fe(III) oxides in situ.   9 

Recent evidence indicates that other organisms belonging to the Betaproteobacteria may 10 

also play a role in the reduction of Fe(III) in sedimentary environments although the extent of 11 

this role has yet to be quantified38,114,117-119.  Similarly, enzymatic Fe(III) reduction is not limited 12 

to the Proteobacteria.  The potential of the poorly described Acidobacteria to contribute to Fe(III) 13 

reduction was demonstrated with the isolation of Geothrix fermentans
120 and supported by the 14 

identification of 16S rDNA most similar to this microorganism in the highest dilution of an 15 

Fe(III) reducing most probable number enumeration series from subsurface sediments121.  To 16 

date the exact role of members of this phylum in the environment remains elusive because of the 17 

limited availability of pure cultures; however, given that Acidobacteria are ubiquitous in the 18 

environment122-124, the contribution of these microorganisms to Fe biogeochemical cycling in 19 

soils and sediments could be globally significant.                    20 

 In addition to the FRM described above which rely on energy conservation for growth 21 

from the dissimilatory reduction of Fe(III), a variety of fermentative microorganisms have also 22 

been recognized to enzymatically catalyze the reduction of Fe(III) (REF. 125-127 and references 23 
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therein).  These fermentative microorganisms transfer only a minor fraction, ca. 5%, of the 1 

available reducing equivalents to Fe(III)126, and Fe(III) is not required for growth.  The diversion 2 

of reducing equivalents to Fe(III) may provide an energetic advantage utilizing the oxidation of 3 

NAD(P)H coupled to Fe(III) reduction to yield ATP
128.  As such, Fe(III) reduction coupled to a 4 

fermentative metabolism is considered to play a minor role in iron geochemical cycling relative 5 

to respiratory Fe(III) reduction.  In addition to the fermentative microorganisms that have been 6 

identified to reduce Fe(III), some sulfate reducing129,130 and methanogenic131 microorganisms are 7 

also capable of Fe(III) reduction without the demonstrated benefit of growth.  Competition for 8 

available electron donors between microbial communities supporting these metabolisms has been 9 

implicated in the suppression of sulfate reduction and methanogenesis in sedimentary 10 

environments132,133.  However, the direct enzymatic reduction of Fe(III) coupled to the oxidation 11 

of H2 by sulfate reducing and methanogenic microorganisms would directly inhibit sulfate 12 

reducing and methanogenic metabolisms at the cellular level.  The physiological advantage 13 

created by oxidizing H2 coupled to Fe(III) reduction is unknown.  In fact, this metabolism would 14 

scavenge reducing equivalents impairing the ability of these microorganisms to grow with the 15 

transfer of electrons to sulfate or carbon dioxide.  The true ecological implications of this 16 

alternative lifestyle stills remains a mystery for these organisms.  17 

Go with the flow: Electron transport to Fe(III) oxides 18 

Iron(III) oxide minerals are insoluble and thus unable to diffuse inside the cell.  Therefore 19 

electron transport to the terminal electron acceptor cannot occur within the periplasm as it does 20 

for soluble electron acceptors such as nitrate or fumarate134 and would require the reduction of 21 

Fe(III) to occur outside of the cell with a protein localized in the a outer membrane, presumably 22 

a terminal iron reductase.  Just as the strategies utilizing insoluble Fe(III) oxides as a terminal 23 
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electron acceptor differ between the two model FRM, Shewanella sp. and Geobacter sp., the 1 

proteins involved in electron transport are also dissimilar.  The only general similarity between 2 

the electron transport mechanisms commences with the transfer of electrons from the 3 

dehydrogenase to a quinone pool consisting of ubiquinones and menaquinones in the 4 

cytoplasmic membrane to c-type cytochromes and finally to a reductase in the outer 5 

membrane97,135-139.  While an iron reductase has eluded identification to date, significant 6 

developments have advanced our knowledge of Fe(III) reduction biochemistry in two model 7 

FRM, Shewanella sp. and Geobacter sp.  Development of electron transport models are in the 8 

formative years as the number of c-type cytochromes directly implicated in Fe(III) reduction is 9 

far less than has been identified within completed genome sequences.  The completed genome 10 

sequence of S. oneidensis and G. sulfurreducens revealed 39 and 111 putative c-type 11 

cytochromes respectively140,141.  The high number of c-type cytochromes, specifically in G. 12 

sulfurreducens, has led to the suggestion of multiple pathways of electron transport142.  The 13 

models depicted in Figure 5 illustrate the components known to be directly involved in electron 14 

transport to Fe(III) in both Shewanella sp. and Geobacter sp. as described to date.   15 

In Shewanella sp. the electrons are transferred from the menaquinone to a tetraheme c-16 

type cytochrome, CymA, located in the cytoplasmic membrane136,143-145.  The electrons are then 17 

passed to electron carriers within the periplasm.  To date, two c-type cytochromes in the 18 

periplasm have been identified as potential electron carriers necessary for Fe(III) reduction 19 

within Shewanella sp., MtrA and Cyt C3146-148.  A small tetraheme c-type cytochrome, Cyt C3, 20 

within the periplasm known to be associated with Fe(III) reduction 149,150 may serve as an 21 

electron shuttle between electron carriers151.  MtrA is a decaheme c-type cytochrome which is 22 

similarly thought to accept electrons from the cytoplasmic membrane electron carrier CymA, and 23 
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transfer these electrons to an outer membrane protein147.  It has also been proposed that MtrA 1 

alternatively serves as a terminal reductase for soluble Fe(III) within the periplasm148 (FIG. 5).  2 

An outer membrane cytochrome partially exposed on the cell surface147,152, OmcB (formerly 3 

denoted as mtrC147), accepts electrons from periplasmic proteins and has the potential to directly 4 

reduce extracellular Fe(III)145,152 (FIG. 5).   This is supported by studies involving a mutation in 5 

omcB which resulted in a decreased ability to reduce Fe(III), however some Fe(III) reduction did 6 

still occur145,153 demonstrating that Fe(III) reduction is not absolutely dependent on a functioning 7 

omcB (FIG. 5).    8 

Given the limited information available to date, the relationship between the periplasmic 9 

cytochromes and cytoplasmic outer membrane proteins has not been firmly established in 10 

Geobacter sp.154.  A key periplasmic cytochrome, MacA, localized in the cytoplasmic membrane 11 

was identified and shown to play a central role in the transfer of electrons to Fe(III).  It is 12 

predicted to serve as an intermediate carrier similarly to MtrA in Shewanella sp.154.  MacA, may 13 

then pass electrons to other periplasmic proteins such as PpcA, a tri-heme periplasmic c-type 14 

cytochrome involved in electron transport to proteins located in the outer membrane155 (FIG. 5).  15 

One such outer membrane protein, OmcB, was determined to play a significant role in Fe(III) 16 

reduction142,156.  Disruptions in omcB by gene replacement impaired the ability of G. 17 

sulfurreducens to reduce Fe(III) by ca. 94-97%156.  However, the omcB deficient mutant adapted 18 

to growth on soluble Fe(III) over time with similar reduction rates to the wild type, although 19 

growth was only ca 60% of the wild type142.  Interestingly the adapted mutant was unable to 20 

reduce insoluble Fe(III) oxides indicating that different electron transport mechanisms are 21 

employed to reduce insoluble and soluble Fe(III) sources142.  The recent identification of 22 

conductive “nanowires” implicated the involvement of other outer membrane proteins in electron 23 



 21 

transport to Fe(III) oxides.  Reguera et al. (2005)95 have proposed that pili directly accept 1 

electrons from intermediary electron transfer proteins located in the periplasm and/or outer 2 

membrane for transfer to the solid-phase Fe(III) oxide surface (FIG. 5).  The concept of electron 3 

tunneling is not a foreign concept in biology in which nanowires can be formed with redox 4 

cofactors within close proximity (14Å) of each other157, yet the identification of redox reactive 5 

nanowires introduces an exciting new twist to cell biology.                     6 

 7 

Concluding Remarks 8 

 Over the last two decades, recognition of the microbial reduction and oxidation of the 9 

fourth most abundant element in the Earth’s crust has identified a globally significant 10 

biogeochemical process.  While it is recognized that these microorganisms are ubiquitous, the 11 

physiology of Fe(III) reduction and Fe(II) oxidation remains an enigma, as a terminal Fe(III) 12 

reductase has yet to be identified and only c-type cytochrome(s) have been implicated in Fe(II) 13 

oxidation at circumneutral pH.  Genome sequencing and the subsequent development of in silico 14 

physiological models yield a tool to predict microbial metabolisms in response to the 15 

environmental conditions158,159 and can potentially provide greater insight into Fe oxidation and 16 

reduction reactions in environmental systems.  These advances can also be applied to enhance 17 

and predict the behavior of microorganisms exploited for their metabolism associated with 18 

biotechnological applications (Box 3).  While significant advances have been made, we are 19 

continuously learning of previously unidentified microbially-mediated redox reactions and 20 

initiating the quest for microorganisms responsible for catalyzing these unique metabolisms, i.e. 21 

ammonium oxidation coupled to Fe(III) reduction14-16, that can perpetuate a dynamic anaerobic 22 

iron redox cycle.          23 
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Box 1.  Acidogenic Fe(II) Oxidation 

 The dissolution of metal-sulfide rich minerals (i.e. pyrite, FeS2) via chemical weathering 

when exposed to fluids containing O2 results in the generation of protons creating an acidic 

environment enriched with Fe(II) and SO4
2- according to equation B1. 

FeS2 +3.5O2 + H2O ! Fe(II) + 2SO4
2- + 2H+ abiotic (B1) 

Unlike environments at circumneutral pH, the abiotic reaction between dissolved Fe(II) and O2 is 

insignificant at low pH values such as those in these acidic environments (pH<4.0).  Microbial 

catalysis (Eq. B2) by lithotrophic Archaea (Ferroplasma acidiphilum, F. acidarmanus, 

Metallosphaera sedula) and Bacteria (Acidithiobacillus ferrooxidans, Acidimicrobium 

ferrooxidans) accelerate the Fe(II) oxidation rate forming Fe(III)aq and a variety of Fe(III) 

minerals, jarosite, schwertmannite, goethite, and ferrihydrite1.   

14Fe(II) +3.5O2 + 14H+ ! Fe(III) + 7H2O biotic (B2) 

The generation of Fe(III) perpetuates pyritic dissolution via abiotic oxidation of sulfide as noted 

in equation B3.   

FeS2 +14Fe(III) + 8H2O ! 15Fe(II) + 2SO4
2- + 16H+ abiotic (B3) 

The combined interaction between microbial catalysis and mineral dissolution can result in a 

sustainable cycle potentially driving the pH of the environment to below values of 2 (REF. 3).   
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Box 2.  Banded Iron Formations 1 

 The deposition of alternating iron-rich and silica-rich mineral layers in the late Archean 2 

to early Proterozoic resulted in the genesis of the Precambrian banded iron formations (BIFs)160.  3 

Early models suggested that BIFs were formed via the consequence of abiotic reactions 4 

involving the metabolic end-product of oxygenic photosynthesis, O2
161, or photo-oxidation of 5 

Fe(II)77,162 resulting in the precipitation of insoluble Fe(III) oxides to form the iron-rich laminae, 6 

often containing magnetite, a mixed valence phase Fe(II)-Fe(III) bearing mineral.  In recent 7 

years microbially-mediated reductive and oxidative respiratory metabolisms have been 8 

implicated in the deposition of Fe(II) and/or Fe(III) bearing minerals in the iron-rich laminae of 9 

BIFs6,34,163-165.  Microaerophilic Fe(II) oxidizers such as G. ferruginea may have oxidized Fe(II) 10 

coupled to the reduction of O2 generated by oxygenic photosynthesis164,166.  However, this model 11 

assumes the evolution of oxygenic photosynthesis generating enough oxygen to serve as the 12 

electron acceptor for the precipitation of Fe(III) rich minerals.  Much debate has been put 13 

forward in contention with the evolution of O2 in the early Proterozoic and thus the role of O2 in 14 

the deposition of BIFs167-169.  Other microbially-mediated mechanisms defining the precipitation 15 

of Fe(II) and Fe(III) rich minerals in anoxic environments have been proposed as plausible 16 

alternatives to the oxic deposition of BIFs, i) microbial Fe(III) reduction, ii) phototrophic Fe(II) 17 

oxidation, and iii) nitrate-dependent Fe(II) oxidation.   18 

 The precipitation of magnetite associated with microbial Fe(III) reduction linked the 19 

deposition of BIFs to FRM17,82,163.  Yet, the generation of Fe(III) as a terminal electron acceptor 20 

from the pool of available Fe(II) would have to precede the metabolic activity of FRM.  In 21 

addition to photo-oxidation, the deposition of Fe(III) oxides under anoxic conditions during late 22 

Archean to early Proterozoic has been proposed to be microbially-catalyzed by photoautotrophic 23 
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Fe(II) oxidizing bacteria34,82,165 or nitrate-dependent Fe(II) oxidizing microorganisms6.   The bio-1 

oxidation of Fe(II) not only results in the precipitation of Fe(III) oxides but also results in the 2 

direct precipitation of magnetite6,52,56, further linking FOM to BIFs.  The availability of light in 3 

the Precambrian is inarguable, as such phototrophic Fe(II) oxidation has received much attention 4 

as model describing the deposition of BIFs.  Light-independent nitrate-dependent Fe(II) 5 

oxidation has received much less attention as a model, however it provides an additional 6 

mechanism of Fe(III) oxide deposition leading to BIF in the Precambrian.  Lightning discharge 7 

contributed to the fixation of N2 into NO (~1012 g/yr) further forming N2O, NO2
- and NO3

- 8 

through abiotic disproportion reactions170-172.  In support of this, genetic and isotopic evidence 9 

indicates that biological nitrogen fixation arose early in the history of life with the last common 10 

ancestor173-175 which would have then provided a biologically produced oxidized nitrogen 11 

species.  Such oxidized nitrogen species could then have served as an electron acceptor for early 12 

FOM leading to the deposition of BIFs in the anoxic environment.  In neoteric environmental 13 

systems microbial communities contribute to a dynamic anoxic iron redox cycle, similar 14 

communities consisting of phototrophic FOM, nitrate-dependent FOM, and FRM may have 15 

existed in the Precambrian to form the BIFs.  The precipitation of biomass with the biogenic 16 

Fe(III) oxides would contribute to diagensis and mineralization of organic matter, resulting in the 17 

heterotrophic reduction of Fe(III) by FRM and the formation of additional magnetite in BIFs82,165 18 

which is further supported by the isotopically light carbon associated with BIFs79.        19 

 20 
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Box 3.  Biotechnological applications 1 

 Goodwill of FOM—Heavy metal and radionuclide immobilization 2 
The end-products of anaerobic microbial oxidation of Fe(II) can also influence 3 

contaminant geochemistry through the formation of a broad variety of environmentally relevant 4 

Fe(III) bearing minerals which can regulate contaminant solubility in natural environments7,36,67.  5 

Previous studies have identified the biogenic formation of minerals such as ferric oxyhydroxide, 6 

goethite, hematite, iron hydrogen carbonate, or maghemite6,38,41,61.  The precipitation of these 7 

biogenic Fe(III) oxides provides a mechanism for the immobilization of heavy metals and 8 

metalloids through coprecipitation or physical envelopment as well as providing  a reactive 9 

surface with an adsorptive affinity for anions (i.e. PO4
3-) and cations (i.e. Zn2+, As5+, Co2+, 10 

U6+)7,36,73.  Heavy metals and radionuclides including U(VI) are rapidly removed (as much as 11 

80% of the initial 100 µM within 5 days) from solution during anaerobic nitrate-dependent 12 

microbial Fe(II) oxidation in association with the biogenic Fe(III) oxides7.  As such, the 13 

anaerobic formation of biogenic Fe(III) oxide-containing minerals has been identified as a 14 

plausible bioremediative strategy for permanently immobilizing heavy-metals and 15 

radionuclides7,176.   16 

 17 

Goodwill of FRM—Energy generation and contaminant immobilization/degradation 18 

 An electrode, yet another solid-phase electron acceptor exploited by FRM to our 19 

energetic advantage.  The harvest of electrical energy mediated by FRM in sedimentary 20 

environments as well as a microbial fuel cell is a technological reality6,177-181.  The utilization of 21 

electrodes as an electron acceptor has not only been proposed to harvest energy from sediments 22 

but also to remediate environments contaminated with organic compounds, i.e. aromatic 23 
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compounds180 and potentially harvesting energy in the process.  FRM are not only capable of 1 

generating electricity, previous studies have indicated an incredible metabolic versatility and 2 

these organisms  have been demonstrated to transform a variety of organic121,182-185 and heavy 3 

metal/radionuclide contaminants84,186,187.        4 
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Figure Text 1 

Figure 1.  Microbially-Mediated Iron Redox Cycle 2 

Microorganisms play a significant role mediating iron oxidation and reduction reactions in soils 3 

and sedimentary environments.  The reduction of Fe(III) oxidations occurs in the absence of 4 

oxygen.  Reoxidation of the biogenic Fe(II) may occur via several biological mechanisms and is 5 

not simply limited abiotic reactions with molecular oxygen.  The regeneration of Fe(III) in the 6 

anoxic environment promotes a dynamic iron redox cycle.     7 

 8 

Figure 2.  Redox Tower 9 

Theoretical Eh (volts) values for reduction-oxidation couples significant to microbially-mediated 10 

iron redox cycling calculated at circumneutral pH.  The redox tower is an effective way to 11 

visualize the potential electron donors and acceptors utilizable by microorganisms measuring the 12 

tendency of a compound to interact as an electron donor or acceptor.  An electron donor will 13 

have a more negative potential than will the electron acceptor.  Reduction potentials were 14 

obtained from the following sources:  a188, b134, c13, calculated based on data collected from refs 15 

72, 2, e189.     16 

  17 

Figure 3.  Phylogenetic affiliation of Microorganisms contributing to Iron Redox Cycling  18 

Unrooted phylogenetic tree based on nearly complete 16S rDNA sequences from representative 19 

iron cycling prokaryotes.  Iron reducers are depicted in red, iron oxidizers are depicted in black. 20 

 21 

Figure 4.  Microbial strategies mediating electron transfer to insoluble Fe(III) oxides 22 
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Three primary strategies have been proposed to facilitate the electron transfer between 1 

microorganisms and solid Fe(III) oxide surface.  In Geobacter sp. direct contact with the oxide 2 

surface is required.  The production "nanowires", conductive extracellular appendages, facilitate 3 

electron transfer serving as an electrical conduit to the Fe(III) oxide surface (A).  Endogenously 4 

or exogenously produced electron shuttle mediates electron transfer to solid-phase Fe(III) oxides 5 

(B).  The production of complexing ligands as in the case of Geothrix sp. aids in the dissolution 6 

of the solid-phase Fe(III) oxide providing a soluble Fe(III) form more readily available to the 7 

microorganism (C).  While these strategies have been demonstrated for Fe(III) reducing 8 

microorganisms, similar strategies may be employed by Fe(II) oxidizing microorganisms that are 9 

utilizing solid-phase Fe(II) electron donors.     10 

 11 

Figure 5.  Physiological model of Fe(III) reduction in Shewanella sp. and Geobacter sp. 12 

 13 
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