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The Plan

A probabilist’s glossary:

Filtered probability space.
Random process.
Brownian motion.
Calculus of K. Itô: Random version of Newton’s
calculus. (1944-1951)
Markov process.

Examples of random systems with memory: from
feedback control to stock market fluctuations.

Evolution of random systems with memory.

Encoding of the memory via “slicing” the random
evolution path.
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The Plan-Contd

Consider collection of all possible states (alias
state space): e.g. a Hilbert space.

State space is BIG: infinite-dimensional.

View dynamics/time-evolution of slice within the
state space-rather than of current states.

Average dynamics is represented by a one-parameter
semigroup of linear operators on the space of
bounded continuous functions on the state space.

Concept of “random flow” to describe pathwise
dynamics in state space.

Random Dynamics and Memory:Structure within Chaos – p.4/77



The Plan-Contd

Consider collection of all possible states (alias
state space): e.g. a Hilbert space.

State space is BIG: infinite-dimensional.

View dynamics/time-evolution of slice within the
state space-rather than of current states.

Average dynamics is represented by a one-parameter
semigroup of linear operators on the space of
bounded continuous functions on the state space.

Concept of “random flow” to describe pathwise
dynamics in state space.

Random Dynamics and Memory:Structure within Chaos – p.4/77



The Plan-Contd

Consider collection of all possible states (alias
state space): e.g. a Hilbert space.

State space is BIG: infinite-dimensional.

View dynamics/time-evolution of slice within the
state space-rather than of current states.

Average dynamics is represented by a one-parameter
semigroup of linear operators on the space of
bounded continuous functions on the state space.

Concept of “random flow” to describe pathwise
dynamics in state space.

Random Dynamics and Memory:Structure within Chaos – p.4/77



The Plan-Contd

Consider collection of all possible states (alias
state space): e.g. a Hilbert space.

State space is BIG: infinite-dimensional.

View dynamics/time-evolution of slice within the
state space-rather than of current states.

Average dynamics is represented by a one-parameter
semigroup of linear operators on the space of
bounded continuous functions on the state space.

Concept of “random flow” to describe pathwise
dynamics in state space.

Random Dynamics and Memory:Structure within Chaos – p.4/77



The Plan-Contd

Consider collection of all possible states (alias
state space): e.g. a Hilbert space.

State space is BIG: infinite-dimensional.

View dynamics/time-evolution of slice within the
state space-rather than of current states.

Average dynamics is represented by a one-parameter
semigroup of linear operators on the space of
bounded continuous functions on the state space.

Concept of “random flow” to describe pathwise
dynamics in state space.

Random Dynamics and Memory:Structure within Chaos – p.4/77



The Plan-Contd

Equilibria: probabilistically stationary states.

Pathwise local stability/instability of equilibria
under perturbations of the state.

Pathwise random dynamics near equilibria: structure
within chaos.

Existence of non-linear stable/unstable smooth
submanifolds of the state space near equilibria.
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Glossary

(Ω,F , (Ft)t∈R, P ) = canonical complete filtered
Wiener space.

Ω := sample space of all continuous paths
ω : R → Rm, ω(0) = 0, in Euclidean space Rm,
with compact open topology;

F := set of all events; ((completed) Borel σ-field of
Ω).

P := Wiener measure on Ω (assigns probabilities to
all events).

Ft := (completed) sub-σ-field of F generated by the
evaluations ω 7→ ω(u), u ≤ t, t ∈ R.
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Glossary-contd

Brownian motion is a random process W (t) : Ω → R
satisfying the following:

Sample space Ω consists of all continuous paths
from positive reals R+ to R. Events are Borel sets
in Ω and their probabilities given by Wiener measure
P . Constructed by N. Wiener.

Each W (t) has mean zero.

Increments W (t2) − W (t1), W (t3) − W (t2) are
independent for t1 < t2 < t3.

Each increment W (t2) − W (t1) is normal with
mean zero and variance t2 − t1.
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Glossary-Contd

For each ω, the Brownian sample path

t 7→ W (t, ω)

is continuous (no breaks in graph) but has no tangents
anywhere!

Theorem:

Brownian motion is Markov (with no memory).

“Markov” means that distributionally speaking, the
future states of W are independent of their past history.

Work by David Blackwell on Markov chains (discrete
case).
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Glossary-Contd

A physical realization of Brownian motion is a plume of
smoke. It can be curtailed at any point without affecting
the future distribution of its particles.

Movement of particles in atmosphere, or of pollen in
liquid, is described by “Brownian movement” (as
discovered by the Scottish botanist Robert Brown-1827).

Theorem:

The true Brownian paths are infinitely rough with no
tangents-hence invisible to the naked eye!

Nevertheless, I will go ahead and show you one!
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Brownian Sample Path

t

W (·, ω)

Brownian Sample Path
t 7→ W (t, ω)
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Glossary-Contd

Each Brownian shift

θ(t, ·) : Ω → Ω, t ∈ R

θ(t, ω)(s) := W (t + s, ω) − W (t, ω), s ∈ R, ω ∈ Ω,

transforms the probability space Ω into itself (by moving
the sample points ω around) while preserving the
probabilities of all events.

Theorem:

The probability space Ω is perfectly mixed by the
Brownian shift θ(t): The only events that are unchanged
are either sure or impossible. (alias “ergodicity”)

Random Dynamics and Memory:Structure within Chaos – p.12/77



Glossary-Contd

Each Brownian shift

θ(t, ·) : Ω → Ω, t ∈ R

θ(t, ω)(s) := W (t + s, ω) − W (t, ω), s ∈ R, ω ∈ Ω,

transforms the probability space Ω into itself (by moving
the sample points ω around) while preserving the
probabilities of all events.

Theorem:

The probability space Ω is perfectly mixed by the
Brownian shift θ(t): The only events that are unchanged
are either sure or impossible. (alias “ergodicity”)

Random Dynamics and Memory:Structure within Chaos – p.12/77



Glossary-Contd

Each Brownian shift

θ(t, ·) : Ω → Ω, t ∈ R

θ(t, ω)(s) := W (t + s, ω) − W (t, ω), s ∈ R, ω ∈ Ω,

transforms the probability space Ω into itself (by moving
the sample points ω around) while preserving the
probabilities of all events.

Theorem:

The probability space Ω is perfectly mixed by the
Brownian shift θ(t): The only events that are unchanged
are either sure or impossible. (alias “ergodicity”)

Random Dynamics and Memory:Structure within Chaos – p.12/77



Noisy Feedback Loop

N D
y(t) x(t)

σx(t − r)
σx(t − r)

x(t − r) − σx(t − r)

Box N: Input signal = y(t), output = x(t) at time
t > 0 related by

dx(t)

dt
= y(t)

dW (t)

dt

where W (t) is Brownian motion “white noise” in EE.
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where W (t) is Brownian motion “white noise” in EE.
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Noisy Feedback– Cont’d

Proportion σ of output signal is fedback from processor
D into N with a time delay r.

Get:

dx(t)

dt
= σx(t − r)

dW (t)

dt
, t > 0 (I)

Call (I) a stochastic differential equation with delay
(memory). Use differentials:

dx(t) = σx(t − r) dW (t), t > 0 (I)

To solve (I), need an initial process η(t), −r ≤ t ≤ 0:

x(t) = η(t) − r ≤ t ≤ 0
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Noisy Feedback-Contd

View (I) as a stochastic integral equation

x(t) = η(0) +

∫ t

0

σx(u − r) dW (u), t > 0

Use idea of stochastic integration with respect to
Brownian motion (K. Itô):

Partition time interval [0, t] by points

0 = u0 < u1 < u2 < · · · ui < ui+1 < · · · un = t

which get closer and closer to each other as n gets in-

finitely large.
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Partition of [0, t]

0=u0 u1 u2 ui ui+1 un−1 un = t
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Noisy Feedback-Contd

The corresponding sums:

n−1
∑

i=0

σx(ui − r)[W (ui+1) − W (ui)]

will approach the Itô stochastic integral:
∫ t

0

σx(u − r) dW (u)

as the number of partition points n gets larger and larger.
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Noisy Feedback-contd

To solve

dx(t) = σx(t − r) dW (t), t > 0 (I)

proceed by successive forward (stochastic) integrations:

0 ≤ t ≤ r, r ≤ t ≤ 2r, 2r ≤ t ≤ 3r, · · · ,

The current value x(t) of the solution x of (I) is
non-Markov.
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Segment Process

−r t − r 0 t

η
xt

x(t)

||||
|
||
|||
||||||||||||||

|
|
|
|
|||||

|||
|

The segment xt is a path [−r, 0] → R defined by

xt(s) := x(t + s), −r ≤ s ≤ 0

xt is Markov.
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Segment Process-Contd

Although the solution x(t) of the stochastic delay
equation

dx(t) = σx(t − r) dW (t), t > 0

is non-Markov, yet the segment process xt is Markov
within the state space of all paths η.

In order to capture the true dynamics of the stochastic
delay equation, we observe the random evolution of the
segment xt rather than the current value x(t) .
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Immediate Feedback-No memory

Conside the case r = 0: (I) becomes a linear stochastic
differential equation (without memory)

dx(t) = σx(t) dW (t), t > 0

and has closed form solution

x(t) = x(0) exp

{

σW (t) − σ2t

2

}

, t ≥ 0.

Can be checked using stochastic differentiation via K.
Itô’s calculus.

x(t) is Markov (no delay= no memory).

Random Dynamics and Memory:Structure within Chaos – p.21/77



Immediate Feedback-No memory

Conside the case r = 0: (I) becomes a linear stochastic
differential equation (without memory)

dx(t) = σx(t) dW (t), t > 0

and has closed form solution

x(t) = x(0) exp

{

σW (t) − σ2t

2

}

, t ≥ 0.

Can be checked using stochastic differentiation via K.
Itô’s calculus.

x(t) is Markov (no delay= no memory).

Random Dynamics and Memory:Structure within Chaos – p.21/77



Immediate Feedback-No memory

Conside the case r = 0: (I) becomes a linear stochastic
differential equation (without memory)

dx(t) = σx(t) dW (t), t > 0

and has closed form solution

x(t) = x(0) exp

{

σW (t) − σ2t

2

}

, t ≥ 0.

Can be checked using stochastic differentiation via K.
Itô’s calculus.

x(t) is Markov (no delay= no memory).

Random Dynamics and Memory:Structure within Chaos – p.21/77



Immediate Feedback-No memory

Conside the case r = 0: (I) becomes a linear stochastic
differential equation (without memory)

dx(t) = σx(t) dW (t), t > 0

and has closed form solution

x(t) = x(0) exp

{

σW (t) − σ2t

2

}

, t ≥ 0.

Can be checked using stochastic differentiation via K.
Itô’s calculus.

x(t) is Markov (no delay= no memory).

Random Dynamics and Memory:Structure within Chaos – p.21/77



Simple Population Dynamics

Consider a large population x(t) at time t evolving
with a constant birth rate β > 0 and a constant death
rate α per capita.

Assume immediate removal of the dead from the
population.

Let r > 0 (fixed, non-random= 9 months!) be the
development period of each individual.

Assume there is migration whose overall rate is
distributed like white noise σẆ (mean zero and
variance σ > 0), where W is one-dimensional
Brownian motion.
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Simple Population – Cont’d

The change in population ∆x(t) over a small time
interval (t, t + ∆t) is

∆x(t) = −αx(t)∆t + βx(t − r)∆t + σẆ∆t

Letting ∆t → 0 and using Itô stochastic differentials,

dx(t) = {−αx(t) + βx(t − r)} dt + σdW (t), t > 0.

Associate with the above stochastic delay equation the
initial path η

x(s) = η(s), −r ≤ s ≤ 0.
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Logistic Population Growth

A population x(t) at time t evolving logistically with
development (incubation) period r > 0 under Gaussian
type noise (e.g. migration on a molecular level):

dx(t)

dt
= [α − βx(t − r)] x(t) + γx(t)

dW (t)

dt
, t > 0,

i.e.

dx(t) = [α − βx(t − r)] x(t) dt + γx(t)dW (t), t > 0,

with initial condition

x(t) = η(t) − r ≤ t ≤ 0.
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Fluid Flow

β = σẆ (t)
(cc/sec) V

β = σẆ (t)
(cc/sec)

αx(t)
(gm/cc)

αx(t − r)
(gm/cc)

Main canal has dye (pollutant) with concentration x(t)
(gm/cc) at time t.

A fixed proportion α of fluid in the main canal is pumped

into the side canal(s).
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Fluid Flow– Cont’d

The fluid takes r > 0 seconds to traverse the side canal.
Assume flow rate (cc/sec) in the main canal is Gaussian
with constant mean and variance σ.

Write equation for rate of dye transfer through a fixed
part V of the main canal.

Then get the following stochastic delay equation:

dx(t) = {νx(t) + µx(t − r)} dt + σx(t) dW (t), t > 0

x(s) = η(s), −r ≤ s ≤ 0

}

where η is a path [−r, 0] → R, ν and µ are real constants.
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Delayed Stock Model

Consider a stock whose price S(t) at any time t satisfies
the following stochastic delay differential equation
(sdde):

dS(t) = h(S(t − a))S(t) dt + g(S(t − b))S(t) dW (t),

t ∈ [0, T ]

S(t) = η(t), t ∈ [−L, 0]











Continuous drift h, volatility function g, positive
delays a, b, maximum delay L := max{a, b}.

Trading Strategy: πS(t) shares of stock S(t) and πB(t) of

bond B(t).
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Delayed Stock Model-contd

Continuous initial path: η : [−L, 0] → R.

Brownian motion W : one-dimensional.

An admissible strategy is said to be an arbitrage
opportunity if with no initial investment the portfolio
yields a positive return at a later time:

arbitrage = free lunch!

Delayed option-pricing model admits no arbitrage.

Constant volatility g and h corresponds to Black-Scholes

model.
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Stock Dynamics
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Stock prices when h = constant, b = 2, T = 365, L = 100.
Stock data: DJX Index at CBOE.
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Delayed BS Formula

(–>)
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“Now let’s do the math”!
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Stochastic Systems with Memory

Combine all dynamic models encountered so far in a
single stochastic differential equation of the form

dx(t) = h(x(t), xt) dt + g(x(t), xt)dW (t), t > 0

(x(0), x0) = (v, η) ∈ R × L2([−r,0],R).

}

W is Brownian motion; xt is the segment process (en-

coding the memory of the solution process x); η is a given

initial path [−r, 0] → R (starting process for x); v ∈ R is

a given initial point.
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State Space

Collect all possible initial conditions (v, η) in a state
space, denoted by H , and defined by

H := {(v, η) : v ∈ R, η ∈ L2([−r,0],R)}.

The state space H is a Hilbert space under the norm

‖(v, η)‖2 := |v|2 +

∫ 0

−r

|η(s)|2 ds

The state space H is BIG: infinite-dimensional.
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Existence

A stochastic differential system with memory is a
relation between the current rate of change of the system
and its past random states.

Theorem:

Under appropriate (fairly general) conditions on the co-

efficients h, g, the stochastic equation with memory has a

unique solution x for each choice of the initial state (v, η)

in the state space H .
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Random Dynamics with Memory

Exploit idea of the segment as paradigm for
encoding the memory as an infinite-dimensional
object that evolves randomly in infinite-dimensional
space (even if the original stochastic signal is
one-dimensional).

Idea amounts to removing the memory from the
original system but at the cost of lifting the system
to infinitely many dimensions.

Within this setting the mathematics is harder but
doable: No free lunch! For example, the Itô calculus
fails for the encoded process, although it works for
the original signal.

Random dynamics is described via the flow.
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Average Dynamics: Hypotheses

The coefficients h, g in the SDE are globally Lipschitz:

|h(v1, η1) − h(v2, η2)| + ‖g(v1, η1) − g(v2, η2)‖

≤ L‖(v1, η1) − (v2, η2)‖H

for all (v1, η1), (v2, η2) ∈ H .
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Markov Property

(v,η)xt1 := solution starting off at (v, η) ∈ L2(Ω, H;Ft1)
at t = t1 for the stochastic differential equation with
memory:

ηxt1(t) =















v +
∫ t

t1
h(xt1(u), xt1

u ) du

+
∫ t

t1
g(xt1(u), xt1

u ) dW (u), t > t1,

η(t − t1), t1 − r ≤ t ≤ t1.
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Markov Property – Cont’d

This gives a two-parameter family of mappings:

T t1
t2 : L2(Ω, H;Ft1) → L2(Ω, H;Ft2), t1 ≤ t2,

T t1
t2 (v, η) := ((v,η)xt1(t2),

(v,η)xt1
t2), (v, η) ∈ L2(Ω, H;Ft1).

Uniqueness of solutions gives the two-parameter
semigroup property:

T t1
t2 ◦ T 0

t1
= T 0

t2
, t1 ≤ t2.
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Markov Property–contd

In the SDE with memory, the trajectory field
{((v,η)x(t), (v,η)xt) : t ≥ 0, (v, η) ∈ H} is a
time-homogeneous Feller process on H with transition
probabilities

p(t1, (v, η), t2, B) := P
(

((v,η)xt1(t2),
(v,η)xt1

t2) ∈ B
)

,

for t1 ≤ t2, (v, η) ∈ H and B ∈ Borel H . That is:

P
(

(x(t2), xt2) ∈ B
∣

∣Ft1

)

= p(t1, (x(t1)(·), xt1(·)), t2, B)

= P
(

(x(t2), xt2) ∈ B
∣

∣(x(t1), xt1)
)

almost surely.
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Markov Property – Cont’d

Further, the trajectory is time-homogeneous:

p(t1, (v, η), t2, ·) = p(0, (v, η), t2 − t1, ·), 0 ≤ t1 ≤ t2

for (v, η) ∈ H .
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Trajectory Sample Path

R

H

X(·, ω)

t 7→ X(t, ω) := (x(t, ω), xt(·, ω))
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Trajectory Sample Path

R

H

t 7→ X(t, ω) := (x(t, ω), xt(·, ω))
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The Semigroup

In the autonomous SDE with memory

dx(t) = h(x(t), xt) dt + g(x(t), xt) dW (t), t > 0

(x(0), x0) = (v, η) ∈ H,

}

assume the coefficients h : H → Rd, and
g : H → Rd×m are globally bounded and globally
Lipschitz.

Cb := Banach space of all bounded uniformly continuous
functions φ : H → R, with the sup norm

‖φ‖Cb
:= sup

(v,η)∈H

|φ(v, η)|, φ ∈ Cb.
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The Semigroup – Cont’d

Define the linear operators Pt : Cb ↪→ Cb, t ≥ 0, on Cb

by

Pt(φ)(v, η) := Eφ
(

(v,η)x(t), (v,η)xt

)

, t ≥ 0, (v, η) ∈ H,

for all φ ∈ Cb.

An (average) equilibrium is an invariant probability
measure µ0 on H:

∫

H

Ptφ dµ0 =

∫

H

φ dµ0

for all φ ∈ Cb and all t ≥ 0.
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The Semigroup–Contd

{Pt}t≥0 is a one-parameter contraction semigroup
on Cb.

{Pt}t≥0 is weakly continuous at t = 0:














Pt(φ)(v, η) → φ(v, η) as t → 0+

{|Pt(φ)(v, η)| : t ≥ 0, (v, η) ∈ H} is bounded by
‖φ‖Cb

.

Weak derivative of {Pt}t≥0 at t = 0 gives its
infinitesimal generatorA, a partial differential
operator on H: Formally, Pt = exp (tA). [Mo.1]
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Pathwise Random Dynamics

Introduce idea of stochastic/random equilibrium: a
random process that is probabilistically stationary in
distribution.

Describe the pathwise random dynamics near the
equilibrium:

Existence of random expanding and contracting
smooth submanifolds of the state space called
unstable and stable manifolds.

The unstable manifolds have fixed (non-random)
finite dimension.

The stable manifolds have infinite dimension (and
finite non-random codimension).
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The Random Flow

With smooth coefficients and regular dependence on the
memory in the noise coefficient g, we have the following
non-trivial observation:

Theorem:

For each sample point ω, we can observe the whole

state space H as it mixes under the random smooth

flow.
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The Random Flow-contd

The solution of the regular SDE with memory can be
viewed as a function

X(t, (v, η), ω)

of three variables: time t, state (v, η) and chance ω,
continuous in t, smooth in (v, η) and satisfying:

X(t, (v, η), ω) = ((v,η)x(t, ω),(v,η) xt(ω))

X(t1 + t2, ·, ω) = X(t2, ·, θ(t1, ω)) ◦ X(t1, ·, ω)
for all t1, t2 ∈ R+, all ω ∈ Ω.

X(0, (v, η), ω) = (v, η) for all initial paths
(v, η) ∈ H , and all ω ∈ Ω.
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The Flow Property

H H H

Ω

t = 0 t = t1 t = t1 + t2

X(t1, ·, ω) X(t2, ·, θ(t1, ω))

θ(t1, ·) θ(t2, ·)

ω θ(t1, ω) θ(t1 + t2, ω)

•(v, η)

•
X(t1, (v, η), ω) •

X(t1 + t2, (v, η), ω)

Random Dynamics and Memory:Structure within Chaos – p.49/77



The Flow Property

H H H

Ω

t = 0 t = t1 t = t1 + t2

X(t1, ·, ω) X(t2, ·, θ(t1, ω))

θ(t1, ·) θ(t2, ·)

ω θ(t1, ω) θ(t1 + t2, ω)

•(v, η)

•
X(t1, (v, η), ω) •

X(t1 + t2, (v, η), ω)

Random Dynamics and Memory:Structure within Chaos – p.49/77



The Flow Property

H H H

Ω

t = 0 t = t1 t = t1 + t2

X(t1, ·, ω) X(t2, ·, θ(t1, ω))

θ(t1, ·) θ(t2, ·)

ω θ(t1, ω) θ(t1 + t2, ω)

•(v, η)

•
X(t1, (v, η), ω) •

X(t1 + t2, (v, η), ω)

Random Dynamics and Memory:Structure within Chaos – p.49/77



The Flow Property

H H H

Ω

t = 0 t = t1 t = t1 + t2

X(t1, ·, ω) X(t2, ·, θ(t1, ω))

θ(t1, ·) θ(t2, ·)

ω θ(t1, ω) θ(t1 + t2, ω)

•(v, η)

•
X(t1, (v, η), ω) •

X(t1 + t2, (v, η), ω)

Random Dynamics and Memory:Structure within Chaos – p.49/77



The Flow Property

H H H

Ω

t = 0 t = t1 t = t1 + t2

X(t1, ·, ω) X(t2, ·, θ(t1, ω))

θ(t1, ·) θ(t2, ·)

ω θ(t1, ω) θ(t1 + t2, ω)

•(v, η)

•
X(t1, (v, η), ω) •

X(t1 + t2, (v, η), ω)

Random Dynamics and Memory:Structure within Chaos – p.49/77



The Flow Property

H H H

Ω

t = 0 t = t1 t = t1 + t2

X(t1, ·, ω) X(t2, ·, θ(t1, ω))

θ(t1, ·) θ(t2, ·)

ω θ(t1, ω) θ(t1 + t2, ω)

•(v, η)

•
X(t1, (v, η), ω) •

X(t1 + t2, (v, η), ω)

Random Dynamics and Memory:Structure within Chaos – p.49/77



Stationary Point-Equilibrium

A random variable Y : Ω → H is a stationary point for
the flow (X, θ) if

X(t, Y (ω), ω) = Y (θ(t, ω))

for all t ∈ R+ and every ω ∈ Ω.

Denote a stationary trajectory by

X(t, Y ) = Y (θ(t)).

The distribution µ0 := P ◦Y −1 of Y is an invariant mea-

sure (or average equilibrium) for the semigroup {Pt}t≥0

(if Y is independent of W ).
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Exponential Growth

Theorem:

Within the state space H, each stationary point
Y (ω) has a ball B(Y (ω), ρ(ω)) center Y (ω) and
radius ρ(ω) with the property that for any
(v, η) ∈ B(Y (ω), ρ(ω)) the distance between

X(t, (v, η), ω) and Y (θ(t, ω)) grows like eλit for large
t where

{· · · < λi+1 < λi < · · · < λ2 < λ1}

are fixed countable and non-random. These represent

exponential growth rates of the random flow near its

equilibrium.
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A Random Tube

•

•

•
•

Y (ω)

Y (θ(t, ω))

ρ(ω)

ρ(θ(t, ω))

•

•

•
•

x

X(t, x, ω)

x := (v, η) ∈ H
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Hyperbolicity

An equilibrium Y (ω) is hyperbolic if all exponential
growth rates λi are non-zero:

{· · ·λi < · · ·λi0 < 0 < λi0−1 < · · · < λ1}.

λi0 = largest negative growth rate.

λi0−1 = least positive growth rate.

Cf. Classical work by S. Smale and his school on hyper-

bolicity in the deterministic case.
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Stable Manifold Theorem

Let Y be a hyperbolic equilibrium of the SDE with
memory. Then there is a random tube
B(Y (ω), ρ(ω)) around Y , a smooth stable manifold
S(ω), and unstable one U(ω) in B(Y (ω), ρ(ω)) with
the following properties:

The stable manifold S(ω) is the set of all states

(v, η) in B(Y (ω), ρ(ω)) such that the distance between

X(t, (v, η), ω) and Y (θ(t, ω)) decays like eλi0
t for large

t.
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Theorem-contd

(Flow-invariance of the stable manifolds):
The stable manifold S(ω) is eventually transported
into S(θ(t, ω)): That is

X(t, ·, ω)(S(ω)) is a subset of S(θ(t, ω)) for all large
t.
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Theorem-contd

The unstable manifold U(ω) is the set of all states
(v, η) in B(Y (ω), ρ(ω)) such that there is a unique
continuous-time history process also denoted by
y(·, ω) : (−∞, 0] → H such that y(0, ω) = (v, η),
X(t, y(s, ω), θ(s, ω)) = y(t + s, ω) for all s ≤ 0,
0 ≤ t ≤ −s, and the distance between y(−t, ω) and

Y (θ(−t, ω)) decays like e−λi0−1t for large t.

The dimension of the unstable manifold U(ω) is
finite and non-random.

U(ω) and S(ω) intersect transversally at Y (ω).
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Theorem-contd

(Flow-invariance of the unstable manifolds):

The remote history of the unstable manifold U(ω)
may be traced back to U(θ(−t, ω)): That is
U(ω) is a subset of X(t, ·, θ(−t, ω))(U(θ(−t, ω))) for
sufficiently large t.

U(ω) ⊆ X(t, ·, θ(−t, ω))(U(θ(−t, ω)))

Random Dynamics and Memory:Structure within Chaos – p.57/77



Random Saddles

Statistical Equilibrium

•

•
•

•

Stable Manifold
Unstable Manifold

•

•
•

•

•

•
• •

Random Evolution Path

Random Dynamics and Memory:Structure within Chaos – p.58/77



Random Saddles

Statistical Equilibrium

•

•
•

•

Stable Manifold
Unstable Manifold

•

•
•

•

•

•
• •

Random Evolution Path

Random Dynamics and Memory:Structure within Chaos – p.58/77



Random Saddles

Statistical Equilibrium

•

•
•

•

Stable Manifold

Unstable Manifold

•

•
•

•

•

•
• •

Random Evolution Path

Random Dynamics and Memory:Structure within Chaos – p.58/77



Random Saddles

Statistical Equilibrium

•

•
•

•

Stable Manifold
Unstable Manifold

•

•
•

•

•

•
• •

Random Evolution Path

Random Dynamics and Memory:Structure within Chaos – p.58/77



Random Saddles

Statistical Equilibrium

•

•
•

•

Stable Manifold
Unstable Manifold

•

•
•

•

•

•
• •

Random Evolution Path

Random Dynamics and Memory:Structure within Chaos – p.58/77



Stable/Unstable Manifolds

H H

ω θ(t, ω)Ω

Y (ω)
Y (θ(t,ω))

• •

X(t, ·, ω)

θ(t, ·)

S(ω)

S(θ(t,ω))

U(ω)

U(θ(t,ω))

TS(ω)

TU(ω)

TU(θ(t,ω))

TS(θ(t,ω))

large t
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Proof

Details in [M.S]

Sketch of Strategy
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An idea whose time has come!
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THE END!
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THANK YOU!
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SKETCH OF PROOF

OF STABLE MANIFOLD

THEOREM

(<–)
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Strategy

By definition, a stationary random point Y (ω) ∈ H
is invariant under the random flow X; viz
X(t, Y ) = Y (θ(t, ·)) for all times t.

Linearize the random flow X along the stationary
point Y (ω) in H . By stationarity of Y and the
random flow property of X , this gives a random
linear flow (DX(t, Y ), θ(t, ·)) in L(H), the space of
all continuous linear operators on H .

Random Dynamics and Memory:Structure within Chaos – p.68/77



Strategy

By definition, a stationary random point Y (ω) ∈ H
is invariant under the random flow X; viz
X(t, Y ) = Y (θ(t, ·)) for all times t.

Linearize the random flow X along the stationary
point Y (ω) in H . By stationarity of Y and the
random flow property of X , this gives a random
linear flow (DX(t, Y ), θ(t, ·)) in L(H), the space of
all continuous linear operators on H .

Random Dynamics and Memory:Structure within Chaos – p.68/77



Strategy-contd

Ergodicity of θ allows for the notion of
hyperbolicity of a stationary point Y of the random
flow X via Oseledec-Ruelle theorem:

lim
t→∞

{[

DX(t, Y (ω), ω)
]∗ ◦

[

DX(t, Y (ω), ω)
]}1/2t

is a compact, symmetric, non-negative operator
with discrete non-random spectrum

eλ1 > eλ2 > eλ3 > · · · > eλi > · · ·
with Lyapunov exponents {λi, i ≥ 1}.

Y is hyperbolic if λi 6= 0 for every i.
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Strategy-contd

Assume that ‖Y ‖ε0 is integrable (for small ε0).
Variational method of construction of the random
flow shows that the linearized flow satisfies
hypotheses of refined versions of ergodic theorem
and Kingman’s subadditive ergodic theorem. These
refined versions give invariance of the Oseledec
spaces under the continuous-time linearized flow.
Thus the stable/unstable subspaces will serve as
tangent spaces to the local stable/unstable manifolds
of the non-linear random flow X .
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Strategy-contd

Establish continuous-time integrability estimates on
the spatial derivatives of the non-linear flow X in a
neighborhood of the stationary point Y . Estimates
follow from the variational construction of the
random flow.
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Strategy-contd

Introduce the auxiliary random flow

Z(t, ·, ω) := X(t, (·) + Y (ω), ω) − Y (θ(t, ω)),

t ∈ R+, ω ∈ Ω.

Refine arguments in [Ru.2] to construct local stable/
unstable manifolds for the discrete random flow
(Z(n, ·, ω), θ(n, ω)) near 0 and hence (by
translation) for X(n, ·, ω) near Y (θ(n, ω)) for all ω

sampled from a θ(t, ·)-invariant sure event in Ω.
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Strategy-contd

This is possible via continuous-time integrability
estimates, the perfect ergodic theorem and the
perfect subadditive ergodic theorem. By
interpolating between discrete times and further
refining the arguments in [Ru.2], show that the
above manifolds also serve as local stable/unstable
manifolds for the continuous-time random flow X
near Y .
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Strategy-contd

Final key step:

Establish the asymptotic invariance of the local
stable manifolds under the random flow X .
Combine arguments in [Ru.2] with some difficult
estimates using the continuous-time integrability
properties, and the perfect subadditive ergodic
theorem. Asymptotic invariance of the local
unstable manifolds follows by employing the
concept of a stochastic history process for X
coupled with similar arguments to the above.
Existence of history process compensates for the
lack of invertibility of the random flow. �(<–)
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Some Finance-Definitions
(<–)

An option is a contract giving the owner the right to buy
or sell an asset, in accordance with certain conditions and
within a specified period of time.

A European call option gives its owner the right to buy a
share of stock at the maturity or expiration date of the
option, for a specified exercise price.

The option is exercised when the exercise price is paid.

European call options can only be exercised at the matu-

rity date.
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Delayed Black-Scholes Formula

Assume delayed stock dynamics with portfolio consisting
of a stock S and a bond B(t) = ert. Let V (t) be the fair
price of a European call option written on the stock S
with exercise price K and maturity time T . Let ϕ
denote the standard normal distribution function:

ϕ(x) :=
1√
2π

∫ x

−∞
e−u2/2 du, x ∈ R.

Then for all t ∈ [T − l, T ] (where l := min{a, b}), the
option price V (t) is given by

V (t) = S(t)ϕ(β+(t)) − Ke−r(T−t)ϕ(β−(t)),
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Delayed Formula – Cont’d

where

β±(t) :=
log S(t)

K +
∫ T

t

(

r ± 1
2g(S(u − b))2

)

du
√

∫ T

t g(S(u − b))2du

.

The hedging strategy is given by

πS(t) = ϕ(β+(t)),

πB(t) = −Ke−rTϕ(β−(t)),

for t ∈ [T − `, T ].
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