
Southern Illinois University Carbondale
OpenSIUC

Publications Department of Geology

9-2014

Fitting multiple bell curves stably and accurately to
a time series as applied to Hubbert cycles or other
phenomena
James A. Conder
conder@geo.siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/geol_pubs
The companion code to this article is available at http://opensiuc.lib.siu.edu/geol_comp/4/.

This Article is brought to you for free and open access by the Department of Geology at OpenSIUC. It has been accepted for inclusion in Publications
by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Conder, James A. "Fitting multiple bell curves stably and accurately to a time series as applied to Hubbert cycles or other phenomena."
Mathematical Geosciences 47, No. 6 (Sep 2014): 663-678. doi:doi:10.1007/s11004-014-9557-7.

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fgeol_pubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/geol_pubs?utm_source=opensiuc.lib.siu.edu%2Fgeol_pubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/geol?utm_source=opensiuc.lib.siu.edu%2Fgeol_pubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/geol_pubs?utm_source=opensiuc.lib.siu.edu%2Fgeol_pubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/geol_comp/4/
mailto:opensiuc@lib.siu.edu


 

 1	  

Fitting multiple bell curves stably and accurately to a time series as applied to Hubbert 
cycles or other phenomena 
 
by James A. Conder2 
 
1 Received        Dec 30, 2013        ; accepted_____________________. 

2 Department of Geology, Southern Illinois University, Carbondale, IL 62901 U.S.A.; e-

mail: conder@geo.siu.edu 

 
 

Corresponding Author: 

J.A. Conder 

  Department of Geology 

Southern Illinois   University 

Carbondale, IL, 62901 U.S.A. 

 

Phone  + 1 618 453 7352 

Fax +1 618 453 7393 

e-mail: conder@geo.siu.edu  



 

 2	  

Abstract 

Bell curves are applicable to understating many observations and measurements across the 

sciences. Relating Gaussian curves to data is a common because of its relation to both the Central 

Limit Theorem and to random error. Similarly, fitting logistic derivatives to oil or other non-

renewable resource production is common practice. Fitting bell curves to a time series is an 

inherently non-linear problem requiring initial estimates of the parameters describing the bell-

curves. Poor estimates lead to instability and divergent solutions. Fitting to a cumulative curve 

improves stability, but at the expense of accuracy of the final solution. Jointly fitting multiple bell 

curves is superior to extraction of curves one at a time, but further exacerbates the non-linearity. 

Including both the cumulative data and the bell-curve data within the inversion, can exploit the 

greater stability of the cumulative fit and the greater accuracy of a direct fit. The algorithm 

presented here inverts for multiple bells by combining cumulative and direct fits to exploit the 

best features of both. The versatility and accuracy of the algorithm are demonstrated using two 

different Earth Science examples: a seismo-volcanic sequence recorded by a hydrophone array 

moored to the seafloor and U.S. coal production. The MatLab function used here for joint curve 

determination is included in the online manuscript complementary material. 

 

KEY WORDS: Gaussian, Hubbert multicycles, Curve-fitting 
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1. Introduction 

One of the most basic procedures for extracting information from a time series of discrete data 

points is to fit the data to a curve of known form, thereby reducing the data to a few describable 

parameters. By reducing a large number of ordered data to a few parameters, the system is not 

only easier to describe, but simpler to understand, and may provide some predictive capability, 

for example dealing with resource production (e.g., Rutledge 2011). Ideally, a fit is over-

determined (i.e., more data than parameters describing the curve). In simple form this may be a fit 

to a line, but any function with a set of independent parameters can be used. 

  

A typical measure for the best-fitting curve of a given form is to find the set of parameters that 

minimizes the sum of the squares of the misfit of the data (SSE) to the adopted curve, stated as 

 

SSE = (dipre − di )
2

i
∑ ,         (1) 

 

where di denotes the ith datum and dipre denotes the predicted value of the ith data point using the 

adopted curve. A convenient way to normalize SSE for easy comparison for different solutions is 

using the root mean square error (RMSE). 

 

RMSE = SSE
N

,         (2) 

 

where N is the number of data.   

 

Depending on the data being analyzed, one may not want to use a line or higher order polynomial 

to fit data, but rather some other basis function, like a sine or bell curve. Any function with the 
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form y ~ exp(-t2) will form a bell shaped curve. In particular, the Gaussian or Normal - sometimes 

termed the bell curve - has wide applicability in the physical, natural, and social sciences because 

of both the Central Limit Theorem (Kirkup and Frenkel 2006, p143-150) and its relevance to 

random error. However, fitting functions such as bell curves to data is an inherently non-linear 

problem requiring initial estimates of the desired parameters. If the estimates are not precise 

enough, calculations may not converge to a realistic solution. One could fit a cumulative bell-

curve, which is monotonic, and therefore less sensitive to the precision of initial parameter 

estimates, but is less sensitive to the exact location of the peak and therefore loses some accuracy 

in the final solution. In some instances, more than one bell-curve may be desired to fit to a time 

series. Including additional curves further compounds issues of stability and accuracy. Note, the 

term time series in this paper refers to any set of ordered data whether or not the independent 

variable is explicitly time. 

 

The focus of this paper is to exploit the advantages of fitting cumulative and standard data 

simultaneously, thereby improving stability of fitting bell curves without cost to accuracy. The 

method provides the most gains when fitting multiple curves to a data set. To show the value of 

the constructed algorithm, the method is applied to a couple of examples relative to the Earth 

Sciences: seismo-volcanic detections on a hydrophone array and U.S. coal production. A MatLab 

function for fitting Gaussians or logistic derivatives to a time series incorporating the methods 

described here can be found in the complementary materials. 

 

2. Bell-curve fitting 

The Gaussian has the form 

f = Aexp − 1
2

t − µ
σ

⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟
 ,        (3) 

where t is the independent variable, µ is the location of the curve peak, A is the amplitude of the 



 

 5	  

peak, and σ is a width parameter, often noted as standard deviation. 

 

The major issues in curve fitting algorithms for over-determined problems are 1) stability – the 

algorithm converges to a solution with a reasonable set of parameters, 2) accuracy – the solution 

is actually minimizing misfit and that the solution found is for a global minimum and not a local 

minimum, and 3) speed of the calculation.  

 

An always stable approach to finding a minimum SSE for any problem is a grid search over all 

the parameters, looking for which set of values has the smallest SSE (e.g., Conder and Forsyth 

2000). However, the time necessary for this method can become rapidly prohibitive as more 

parameters are added. In the case of fitting bell curves, every additional curve adds 3 parameters 

to be found. So, even limiting to three curves requires nine dimensions to search. While speed is 

not taken as a high priority in this paper as stability and accuracy, it should be explicit that for any 

methodology to be of value, it must have much more practicable time to completion than a grid 

search. 

 

To get away from brute force grid search methods, finding minimum solutions typically relies on 

inverse theory (Menke 2012) and the simple equation 

 

Gm = d.          (4) 

 

m is the set of parameters describing the desired curve, d denotes the vector of discrete data 

values, and G is a matrix containing the partial derivatives of the predicted data relative to the 

model parameters. To find m from a known vector d, one needs to find a suitable inverse, G-g, 

leading to 
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m = G-g d.          (5) 

 

For linear over-determined problems, the well known least squares solution is obtained by pre-

multiplying both sides of Eq. 4 by the transpose of G. Solutions for best-fitting functions with a 

linear set of parameters, where the derivative of with respect to any given parameter does not 

depend on other parameters, are naturally stable and relatively easy to determine accurately and 

quickly. 

 

To fit one bell curve to a time series, the problem may be fully linearized by relating the log of 

the data to a quadratic and fitting the resultant quadratic. So, 

 

log(d) = at2 + bt + c.         (6) 

 

For a Gaussian, 

 

a = -1/(2σ2),          (7) 

 

b = µ/σ2,          (8) 

 

and 

 

c = log 1
σ 2π

⎛
⎝⎜

⎞
⎠⎟
− 1
2

µ
σ

⎛
⎝⎜

⎞
⎠⎟
2

.        (9) 

 

While stable, rapid, and requires no a priori information about the parameters, this does not 

strictly minimize the misfits as shown in Eq. 1, but rather the log misfits. Even more crucially, 
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this linearization method cannot fit more than one bell curve to a time series. For data with more 

than one bell present in the signal, the result will subsequently give only a gross representation of 

all the data together as one bell curve. 

 

Without the linear transform above, fitting Gaussian curves is inherently non-linear, requiring 

initial estimates of the desired parameters to be solved to build the G-matrix. The solution may 

then be iterated with progressively improved estimates of the parameters. The better the estimates 

to the true values, the more accurate the derivatives within G, and the faster convergence will be 

reached. The more interdependent the derivatives are on the various parameters, the more 

accurate the initial estimates need to be to reach convergence. In particular, the non-monotonic 

shape of a bell curve tends the problem towards instability without reasonably careful seeding of 

initial estimates. 

 

2.1 Fitting cumulative curves 

One way to reduce the sensitivity of initial seed values on stability is to instead fit the cumulative 

data to a cumulative Gaussian, F. 

 

F = π
2
Aσ 1+ erf t − µ

2σ
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

 .       (10) 

 

The parameters A, σ, and µ are the same as in Eq. 3 and erf is the error function. The advantage 

of fitting the cumulative rather than the standard curve is that the cumulative is monotonic, and 

therefore can tolerate a wider range of parameter seed values and still reach convergence. Patzek 

and Croft (2010) and Anderson and Conder (2011) took this approach to fit multiple bell curves 

to oil production from various parts of the world. Although more stable, the fit is less sensitive to 

the precise location of the peak. So, using a cumulative Gaussian comes at some cost to accuracy. 
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For instance, as fitted curve peaks are often offset slightly relative to data peaks using a 

cumulative approach because of moderate excesses or deficits in one of the tails, Anderson and 

Conder (2011) grid searched in final positions of the curves. 

 

2.2 Information density 

A useful way to look at the difference in strengths and weaknesses between fitting standard and 

cumulative curves is to look at which data provide the most information to the different curve fits. 

The density of information provided by each of the data to the solution can be found by 

decomposing the partial derivative matrix G in Eq. 4 into two eigenvector matrices, U and V, and 

a matrix Λ with the eigenvalues of the system along the diagonal (Jackson 1972). So, 

 

G = UΛVT.          (11) 

 

The eigenvector matrices, U and V, describe the data space and model space respectively. The 

information density provided by each of the data is found along the diagonal of the matrix D, 

where 

 

D = UUT.          (12) 

 

A look at the amount of information provided by each of the data helps for illustration. Figure 1 

shows starting seed curves for fitting UK oil production from 1965 to 2008 to two Gaussians. 

Figure 1(b) shows the information density associated with each datum for a standard fit while 

1(d) shows the information density for a cumulative fit. The density of information provided from 

each of the data is markedly different for the cumulative and standard fits. The data with the 

greatest importance for the standard fit are those that lie near the peak and near the inflection 
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points of the estimated curves. In essence, nearly all the information is contained between the 

inflection points. The data that lie within the tails of the seed curves provide little information and 

thereby add little to the inverse calculation. This gives great sensitivity to the exact location of the 

peaks – assuming the actual peaks are reasonably described by the estimated peaks - but the 

inverse problem can easily become unstable if the seeded peaks do not adequately represent the 

actual peaks in the data. 

 

In contrast, the cumulative data information densities are more evenly distributed because of the 

monotonic shape of the curve. The greatest density of information in the cumulative data is 

contained by those data near inflections in the cumulative slope.  Importantly, the tails also 

contribute information about the desired parameters (Fig. 1(d)). The more evenly distributed 

density makes for a more stable inversion by including information from the extremities, but at a 

cost of only moderate sensitivity to the exact locations of the peaks in the data, and more 

sensitivity to excess or deficit accumulations in the tails. Recognizing these differences suggests 

that using elements of curve fits to both cumulative and standard data could create a more robust 

algorithm than using either separately.  

 

The derivative of a logistic curve is another bell curve with frequent use, especially as applied to 

the production of natural resources with finite reserves, often termed Hubbert cycles (Deffeyes 

2008), sometimes requiring multiple cycles to fit the data (Nashawi et al. 2010; Patzek and Croft 

2010).  The discussion above applies equally well to the logistic derivative considering only a 

slightly different form of the curve to fit. The logistic derivative and its cumulative (the logistic) 

have the following forms 
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f = Aexp −τ (t − µ)
1+ exp(−τ (t − µ))( )2

⎛

⎝⎜
⎞

⎠⎟
 ,       (13) 

 

and 

 

F = A
τ 1+ exp(−τ (t − µ)( )2

 ,        (14) 

 

with A and µ having analogous definitions to those above, and τ  analogous to 1/σ. 

 

3. Method 

The method presented here aims to fit multiple curves simultaneously, stably, and accurately with 

minimal parameter seeding required by the user. The most common way to address stability is to 

seed the parameters with starting guesses sufficiently close to actual values. This can be crucial 

for fitting non-monotonic curves since poor starting estimates will require pushing some portions 

of the data through regions of poorer fits to get to the best-fitting curve, which may result in 

instability. Monotonic curves are less susceptible to this issue.  

 

The algorithm presented here takes advantage of the greater stability of a cumulative fit and the 

greater accuracy of a direct fit by constraining the fits for Eqs. 3 and 10 (or 13 and 14) 

simultaneously to each desired curve. In essence, each datum is given two values: a cumulative 

value and a non-cumulative value. These values are then fit to the sum of a set of component 

curves, while requiring the same parameters for both the cumulative and non-cumulative 

representations. This approach not only exploits the differences in information density across the 

data for the two curves, but by using the information jointly, the total amount of information 

available for determining the best-fitting parameters is effectively doubled.  
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As this is an iterative inversion, initial estimates (seeds) of the parameters are necessary for 

calculating the derivatives with subsequently improved values for the parameters used to iterate 

to a solution. The less stable the problem, the closer the seed needs to be to the actual value to 

ensure convergence. To free the user of initially estimating the parameters, a few different 

approaches may be taken to determine starting seeds to use. 

 

One simple auto-seeding approach is to assume a set of equally spaced identical curves. Each 

curve then provides 1/M portion of the cumulative curve (M being the number of Gaussians to 

fit). As the area occupied by a particular curve scales with the sum of the products of the 

amplitudes, A, and widths, σ, the seeding of these are best accomplished jointly. 

 

Practice shows that assuming widths about a tenth of 1/M of the width of the time series works 

well. The idea being that the time series is adequately capturing the curves of interest and curve 

width is not on the order of the time series width or larger. The factor of one tenth helps minimize 

the overlap between seed curves, and gives the curves room to expand or contract without 

immediately reaching widths on the order of the time series. 

 

With curve widths established, the amplitudes of the curves can easily be assigned by 

 

A = Flast
Mσ 2π

 ,         (15) 

 

where Flast is the last cumulative datum used as a proxy for the cumulative value at time infinity.  

 

Alternatively, the data may be used directly to help with auto-seeding. For instance, peaks in the 
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data may be tagged as locations for initial guesses of final peaks as well as using peak heights as 

starting amplitudes. Finding widths is less straightforward to extract from the data. If the data 

consists of a few well-defined curves, finding the zeros of the second derivative of the data will 

show the inflection points and therefore the widths may be determined (Goshtasby and O’Neill 

1994). However, this method fails for overlapping curves, which is a principal aim of this study. 

Fortuitously, using width seeds similar to that described above tends to be sufficient.  

 

Another potentially useful way to autoseed is simply through random seeding. A key advantage 

for using random seeds is the ability for doing the problem a number of times to identify the 

presence of local minimum solutions. If the same solution is converged to with various sets of 

seeds, it is in all likelihood a global minimum. If the solution found depends on the seeds given, 

there are local minima present. With enough sets of random seeds, it is possible to find all the 

minima and identify the global minimum among them. 

 

No matter which seeding approach is used, it still may be the case (especially when fitting several 

bell curves) that one or more parameters become unrealistic or a time peak leaves the data space. 

Fortunately, it is easy enough to flag these instances and randomly reseed that curve back into the 

realistic model space. 

   

It is often beneficial to put more relative weight on the cumulative data for early iterations and 

more on direct derivatives for later iterations. This aids stability early when estimated parameters 

likely need significant shifting and aids accuracy when approaching convergence and sensitivity 

to peaks and inflection points is most important. 

 

Once seeds are established and estimates of the partial derivatives with respect to each parameter 

are calculated, a solution may be iterated using any of a number of inverse methods, such as 
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standard least squares, damped least squares (Goshtasby and O’Neill 1994), LSQR (Paige and 

Saunders 1982), LSMR (Fong and Saunders 2010) or Singular Value Decomposition (SVD) 

(Jackson 1972). SVD is the most robust, but tends to be slower than other methods as it requires a 

complete decomposition of the partial derivative matrix to create the inverse. Unless the G matrix 

is poorly conditioned, when the robustness of SVD is most beneficial, LSQR is used here. LSMR 

is as fast and reliable (and sometimes more so) than LSQR, but as yet does not come standard 

with MatLab.  

 

4. Results 

All results presented in this section, other than the explicitly linearized case, use the method 

presented of jointly minimizing the cumulative and non-cumulative curve misfits. 

 

4.1 Hydrophone volcano seismic detections 

Bohnenstiehl et al. (2014) recorded seismo-volcanic signals on a hydrophone array moored to the 

ocean floor in the Lau Basin between Fiji and Tonga. Signals were found to come from several 

dominant azimuths about the array pointing to specific volcanoes. The numbers of detections 

binned by azimuthal direction to the signal source tend to behave in a Gaussian manner with 

energetic bands having widths of a few tenths of degrees. Most bands are clear and easy to fit 

with a single Gaussian to determine a precise azimuth and event frequency (combining peak 

height and width) to relate to individual volcanoes. However, a few bands are more complex. For 

instance, the azimuthal band pointing towards Niuafo’ou Island region in the northern part of the 

basin appears to be a composite signal (Fig. 2), and provides a useful example for exploring 

different approaches to fitting bell curves.  

 

Results of various curve fits are shown in Table 1. In this case, a linearized fit using Eqs. 6 to 9 

does a poor job of representing the data (Fig. 2). Fitting directly to a single Gaussian does a better 
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job, but leaves a significant portion of the signal unfit, suggesting that a second curve might be 

warranted. A standard approach is to sequentially fit component curves by removing the first 

curve from the data and fit the residual to a new curve (Goshtasby and O’Neill 1994). As can be 

seen in Table 1, this improves the RMSE by more than 40%. Using an F-test (e.g., Anderson and 

Conder, 2011), the improvement warrants the addition of the second curve at a 99.2% confidence 

level. Yet, fitting two component curves simultaneously (minimizing the combined misfit) 

reduces the RMSE by nearly 80%, warranting a second curve at better than 99.999% confidence.  

 

Clearly, the jointly determined component curves give a better description of the data than those 

found sequentially. In this case, the difference in the approaches affects the interpretation of the 

activity of the natural system. Not only would a fraction of the energy emanating from one 

volcano be erroneously attributed to another, but the form of the secondary Gaussian would 

suggest a different emanation pattern. The secondary Gaussian derives from signals generated 

over the length of a boomerang shaped volcanic edifice. By not fitting the component curves 

jointly, the secondary Gaussian would suggest the signals were only generated near the summit of 

the edifice (Fig. 3). 

 

Using a sequential approach for something like data compression may be less problematic as one 

would be looking for data characterization as a whole rather than at details between curves. Still, 

a joint determination of the component curves captures more of the overall character of the data 

meaning less misfit and better compression.  

 

4.2 U.S. coal production 

It is not uncommon for multiple local minimization solutions to exist in non-linear problems, 

tending to increase with both complexity of the time series and the number of parameters to be fit. 

Figure 4 shows U.S. coal production. There appear to be three different cycles in the data, with 
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two noticeable peaks prior to 1960 and rapidly increasing production after 1970, possibly peaking 

around 2005. The middle peak is the most challenging to fit as only data from 1935 to 1950 

contribute significantly to the peak. Using logistic derivatives, three different solutions can be 

found with different initial seeds. The three solutions have RMSE values of ~33, 44, and 50. 

Clearly, the solution with RMSE of 33 is the global minimum, while the other two are local 

minima. The primary difference between the solutions is whether the middle peak is found during 

convergence. Only the lowest RMSE solution closely fits the middle peak (Fig. 4). The second 

solution treats the first two peaks as one broad peak with an early hump, and the third uses two of 

the available curves to fit the final (incomplete) peak. 

 

Using 100 sets of random seeds, the global minimum is found 32 times and the others 19 and 49 

times, respectively. The RMSE 50 solution that is found most often uses two of the solution 

curves to build the third cycle. As the third cycle is only one-sided in the data as well as the 

largest, there is more leeway on how to construct it with a low SSE, making that solution easier to 

find. Of course, some user input may help point the solution towards finding the middle peak. 

Using one user input time seed of 1945 results in the lowest RMSE solution being found 72 times 

to 9 and 19, respectively. Using three time seeds of 1917, 1945, and 2003, improves the 

frequency of finding the desired solution even further, with the global minimum solution found 

89 times, the second solution (RMSE 44) 11 times and the third solution (RMSE 50) 0 times. 

 

5. Discussion 

The number of possible component curves to be extracted from a time series is limited by the 

number of data. As there are three parameters per component curve, the number of possible 

component curves extracted may not exceed (N-1)/3 and still maintain an over-determined 

problem. Of course, in practical terms there will be far fewer curves desired. The more 

component curves used, the more local minima likely to exist. Similarly, the more component 
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curves used, the more likely that noise in the data will be fit rather than true signal.  

 

A few research-grade software packages have good utility for fitting bell curves to a time series, 

such as SAS PROC NLIN software (Copyright, SAS Institute Inc), the SPSS Curve Estimation 

routine  (IBM Corp., 2013), SciPy’s optimize.curvefit (Millman and Aivazis 2011), and the 

SOLVER module in Microsoft Excel (Walsh and Diamond 1995). Each has limitations and 

advantages. The SPSS package has an easy to use GUI and can fit a variety of different curves, 

but will only fit a single curve at a time. The others are more flexible in the number of parameters 

that may be fit at one time, but require correspondingly more effort on the part of the user. The 

SOLVER module has been used to good success by several researchers in the Hubbert curve 

modeling community (e.g., Rutledge 2011). It can minimize a value like SSE by adjustment of 

any number of designated parameters. The power of adaptable software like SOLVER or the 

optimize.curvefit module of SciPy is that they calculate numerical derivatives for the various 

parameters and therefore can be used for virtually any function, though with all the caveats of 

stability and finding local minima. Tests with SOLVER show comparable, but slightly higher, 

RMSEs relative to the examples presented in this study - when convergence is reached (typically 

requiring fairly precise starting estimates of parameters). The algorithm presented here is 

designed to be simple to use (accessed as a MatLab function) and to expand stability for 

traditionally low-stability problems without sacrificing accuracy. The greater stability allows for 

convergence of jointly fit multiple curves with relaxed precision of starting estimates of the 

parameters to be calculated, often to the point of allowing a simple auto-seeding to do the job. 

This requires less work on the part of the analyst beforehand, as less a priori information about 

the desired parameters must be deduced, as well as reducing the sensitivity of the final results to 

user bias through initial seeds. 

 

Both Gaussians (Brandt 2007; Liu et al. 2012) and derivatives of logistics (Nashawi et al. 2010; 
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Gallagher 2011) have been applied to production data of fossil fuels and other resources. The 

choice of one basis function over the other is somewhat debatable. That a logistic derivative curve 

would reasonably describe the production data makes some intuitive sense as a logistic was 

designed to track carrying capacity for populations of species within an ecosystem supported with 

limited resources. In this case, the carrying capacity would be analogous to the total extraction or 

consumption of the finite resource. So the derivative would track the production or consumption 

in time – convenient since fossil fuel extraction is typically tabulated in annual increments. 

 

Likewise, there is some intuitive value to using a Gaussian if one considers the Central Limit 

Theorem at work with many concurrent extraction operations combining to a Gaussian-like 

extraction curve. For the Central Limit Theorem to be applicable, any one production system 

should behave relatively independently of the others in the same region. This may be a reasonable 

assumption for production with relative political stability and limited economic barriers, such as 

in the U.S. or Norway (Laherrere 2000). Although, even those may fall short of actual 

independence with individual producers likely responding similarly to the same external 

economic stimuli. 

 

In practice, the difference in goodness of fit between the two different curves is often marginal 

(Patzek and Croft 2010). Using Gaussians for the three curve fit for U.S. coal production results 

in a best RMSE of 35.9 compared to 32.7 for logistic derivatives. In this case, the difference of fit 

is significant. While an F-test is useful for looking at the importance of adding additional 

parameters to a particular model, the corrected Akaike Information Criterion (AICc), stemming 

from information theory, can straightforwardly compare models even if non-nested (Burnham and 

Anderson 2004). For a least squares case,  
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AICc = N log SSE
N

⎛
⎝⎜

⎞
⎠⎟ + 2K + 2K(K +1)

N − K −1
 ,      (16) 

 

where K is the number of model parameters plus one for a given model. The difference in AICc 

between two or more models shows the extent of information loss from one to another, which is a 

combination of goodness of fit in the first term and a model complexity penalty in the following 

terms. The best model has the lowest AICc (least information loss). Even more beneficial than 

picking a best model is that each model can be weighted in a probability sense as the probable 

true model among the given possibilities. 

 

wi =
exp(−0.5Δi )
exp(−0.5Δ j )

j
∑  ,        (17) 

 

where wi are the probabilities which sum to one, and Δi is the difference in AICc between the ith 

model and the lowest AICc in the set. For example, if three models have wi = 0.5, 0.4, and 0.1. 

The first and second model would be 5 and 4 times more probable to be the true model than the 

third, but the first would only be 20% more probable than the second. For the Gaussian and 

logistic derivative 3 component curve cases for U.S. coal, the logistic derivative has a wi > 

0.99999. Much of the information loss of the Gaussian relative to the logistic comes in a 

systematically poorer fit in the initial tail (Fig. 5). This wi may not be particularly precise in that 

Eq. 16 assumes normally distributed errors across the fit, whereas the errors scale with 

production. But, even omitting data prior to 1907 to remove the most non-normally distributed 

portion, wi is still greater than 0.98 for the logistic, because of systematic improvement to fits of 

the peaks and valleys throughout the 20th century (Fig. 5), demonstrating a significantly superior 

fit for logistic derivatives over Gaussians for U.S. coal production. Importantly, it should be kept 
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in mind that using one basis function over the other carries a different set of implicit assumptions 

as to why that curve is appropriate, which should be used as primary criterion as to which curve 

to use regardless of statistical criteria (Burnham and Anderson 2004). 

 

Of course, there are regions that may not fit either set of curves reasonably well. For example, 

Libya may not be expected to have much independence among producers to be Gaussian or act 

economically and technologically unfettered enough to act like a logistic. Indeed, despite efforts 

to interpret production of Libya and other complex production curves in terms of Hubbert cycles 

(Nashawi et al. 2010), an unreasonably large number of cycles must be included to fit the 

production data (Anderson and Conder 2011). Beyond using statistical tests, a red flag that too 

many cycles are likely imposed or that some other set of basis functions should be called for is 

finding smaller cycles contained within larger cycles to fit the data. For a Gaussian approach, 

allowing cycles within cycles violates the Central Limit Theorem assumption because internal 

cycles are what make up the larger Gaussians. That is, the data should not distinguish between 

individual components, as it is the individual components that make up the Gaussian. For a 

logistic approach, one could expect a suite of logistics following a power-law or log-normal 

distribution (Sorrell et al. 2012) with few large and many smaller ones. In a time series where size 

of the scatter scales with the signal (e.g., annual production), small curves will be largely lost in 

the scatter of the larger curves, with any imposed smaller curves largely fitting the noise of the 

system. 

 

6. Conclusion 

Gaussian, Hubbert, and other bell curves serve as useful basis functions for describing and 

understanding many time series. However, because of the inherent non-linearity and instability of 

the problem there are few tools available for simultaneously fitting multiple component curves 

reliably and robustly. Much of the difficulty lies in estimating the desired parameters accurately 
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enough to then solve for them. Because the data provide a more even distribution of information 

about the desired parameters for cumulative curves than peaked curves, fitting data to cumulative 

curves eases the necessary degree of precision for estimating parameters beforehand. However, 

fitting cumulative curves comes at some cost to accuracy of fitting the peaks. Jointly solving for 

the parameters that best fit both the standard curves and the cumulative curves concurrently can 

improve the stability without sacrificing accuracy. This is especially true if early iterations more 

strongly weight cumulative curves and later iterations more strongly weight standard curves. If 

one or more parameters become unreasonable through instability, they can be easily flagged and 

reseeded within the relevant portion of the time series, strongly increasing the likelihood for 

convergence even for randomly seeded parameter estimates. 

 

A common issue, particularly for complex data and/or the inclusion of many component curves, 

is the likelihood of multiple sets of curves that locally minimize SSE. In a case like U.S. coal 

production, it is straightforward to recognize whether a solution is a global minimum as there are 

three clearly distinct peaks to fit, but it may not be as obvious for many cases. The ability to 

quickly randomize the times of the seed curves provides a useful way for exploring the various 

local minima present. Particularly tough cases can still be cracked using a mix of well-valued 

seeds and autoseeds. 
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Figure captions 

Fig. 1 Data information density comparisons for standard and cumulative Gaussian fits; (a) UK 

oil production from 1965 to 2008 as representative time series (open circles); Black lines show 

two seed curves; (b) density of information (crosses) carried by data; Vertical dashed lines show 

the inflection points of summed curve; (c) and (d) are the same, but for cumulative Gaussians; 

data from BP Statistical Review of World Energy 2013 

 

Fig. 2 Seismo-volcanic detections binned by azimuth (open circles) from a hydrophone array 

moored in the central Lau Basin; (a) fits to a linearized Gaussian (dash-dot) and a standard 

Gaussian fit (dashed); (b) fitting more than one Gaussian by sequential fitting; Component 

primary and secondary Gaussians (dashed) with sum of two (thin black line); (c) two Gaussians 

jointly fit to the data; data from Bohnenstiehl et al., 2014 

 

Fig. 3 Seafloor near Niuafo’ou Island; Colorbar denotes seafloor depth in meters; Azimuthal 

directions from the hydrophone array point to where the signals in Figure 2 emanate; White lines 

bound the 2-sigma width of the primary Gaussian in Table 1 with the main peak likely emerging 

from the seamount marked A; Dashed lines show the 2-sigma width for the secondary Gaussian 

using a sequential approach and solid black lines show 2-sigma width of the secondary Gaussian 

when fit jointly, likely deriving from the boomerang shaped edifice marked B  

 

Fig. 4 U.S. coal production from 1800 to 2010 fit by three Hubbert curves; Three discrete peaks 

are visible in the data (open circles); Middle peak is defined only by production from 1935 to 

1950. Three separate local minima are found using different seeding; Composite curves are 

dashed, full solutions are solid lines  

 

Fig. 5 Comparison of data predictions from three cycle Hubbert and Gaussian models for U.S. 
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coal production; Upward bars denote better fit for logistic derivatives, downward bars denote 

better fit for Gaussians; Initial tail is systematically better fit by logistic derivatives; Data from 

1907 onward only (vertical dashed line) are still fit statistically better with logistic derivatives   
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