
Southern Illinois University Carbondale
OpenSIUC

Dissertations Theses and Dissertations

8-7-2009

OPEN SOURCE SOFTWARE PROJECTS'
ATTRACTIVENESS, ACTIVENESS, AND
EFFICIENCY AS A PATH TO SOFTWARE
QUALITY: AN EMPIRICAL EVALUATION OF
THEIR RELATIONSHIPS AND CAUSES
Carlos D. Santos Jr.
University of Sao Paulo, carlosdenner@gmail.com

Follow this and additional works at: http://opensiuc.lib.siu.edu/dissertations
I wish to thank CAPES and Fulbright for the financial support, SIUC for the structure provided, and
Drs. John Pearson and Peter Mykytyn for the always-open door and stable willingness to help me.
Also, I would like to thank Dr. Robert Ping for the valuable insights on statistically testing the ideas
here developed and the University of Notre Dame for the prompt access granted to the database.

This Open Access Dissertation is brought to you for free and open access by the Theses and Dissertations at OpenSIUC. It has been accepted for
inclusion in Dissertations by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Santos Jr., Carlos D., "OPEN SOURCE SOFTWARE PROJECTS' ATTRACTIVENESS, ACTIVENESS, AND EFFICIENCY AS A
PATH TO SOFTWARE QUALITY: AN EMPIRICAL EVALUATION OF THEIR RELATIONSHIPS AND CAUSES" (2009).
Dissertations. Paper 2.

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/dissertations?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/etd?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/dissertations?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/dissertations/2?utm_source=opensiuc.lib.siu.edu%2Fdissertations%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


i 
 

 
 
 
 
 
 
 
 

OPEN SOURCE SOFTWARE PROJECTS‟ ATTRACTIVENESS, ACTIVENESS, 
AND EFFICIENCY AS A PATH TO SOFTWARE QUALITY:  

AN EMPIRICAL EVALUATION OF THEIR RELATIONSHIPS AND CAUSES  
 
 

 
 
 
 
 
 

by 
 

Carlos Santos, Jr. 
 

B.S., Universidade Estadual de Montes Claros (UNIMONTES), 2002. 
M.S., Universidade Federal de Minas Gerais (UFMG), 2005. 

 
 
 
 

A Dissertation 
Submitted in Partial Fulfillment of the Requirements for the 
Doctor of Philosophy in Management Information Systems. 

 
 
 

Department of Management 
in the College of Business and Administration at 

Southern Illinois University Carbondale 
 
 
 
 

August 2009 
 
 
 

 

 
  



ii 
 

DISSERTATION APPROVAL 
 
 
 

OPEN SOURCE SOFTWARE PROJECTS‟ ATTRACTIVENESS, ACTIVENESS, 
AND EFFICIENCY AS A PATH TO SOFTWARE QUALITY:  

AN EMPIRICAL EVALUATION OF THEIR RELATIONSHIPS AND CAUSES  
 
 

by  
 

Carlos Santos, Jr.  
 
 
 

A Dissertation Submitted in Partial 
 

Fulfillment of the Requirements 
 

for the Degree of  
 

Ph. D. 
 

in the field of Management Information Systems. 
 

Approved by: 
 

Dr. John Pearson, Chair 
 

Dr. Peter Mykytyn 
 

Dr. Marcus Odom 
 

Dr. Scott McClurg 
 

Dr. Greg White 
 

College of Business and Administration at 
Southern Illinois University Carbondale 

 
July, 1st 2009. 

 
 
 
 
 

 

 



iii 
 

AN ABSTRACT OF THE DISSERTATION OF 
 
Carlos Santos, Jr., for the Doctor of Philosophy degree in Management 
Information Systems, presented on July, 1st 2009 at Southern Illinois University 
Carbondale. 
 
TITLE:  OPEN SOURCE SOFTWARE PROJECTS‟ ATTRACTIVENESS, 
ACTIVENESS, AND EFFICIENCY AS A PATH TO SOFTWARE QUALITY: AN 
EMPIRICAL EVALUATION OF THEIR RELATIONSHIPS AND CAUSES 
 
MAJOR PROFESSOR: Dr. John Pearson 
 
ABSTRACT: An organizational strategy to develop software has appeared in the market. 

Organizations release software source code open and hope to attract volunteers to improve 

their software, forming what we call an open source project. Examples of organizations that 

have used this strategy include IBM (Eclipse), SAP (Netweaver) and Mozilla (Thunderbird). 

Moreover, thousands of these projects have been created as a consequence of the growing 

amount of software source code released by individuals. This expressive phenomenon 

deserves attention for its sudden appearance, newness and possible usefulness to public 

and private organizations. To explain the dynamics of open source projects, this research 

theoretically identified and empirically analyzed a construct – attractiveness – found crucial 

to them due to its influence on how they are populated and operate, subsequently impacting 

the qualities of the software produced and of the support provided. Both attractiveness‟ 

causes and consequences were put under scrutiny, as well as its indicators. On the side of 

the consequences, it was theoretically proposed and empirically tested whether the 

attractiveness of these projects affects their levels of activeness, efficiency, likelihood of task 

completion, and time for task completion, though not linearly, as task complexity could 

moderate the relationships between them. Also, it was argued at the theoretical level that 

activeness, efficiency, likelihood of task completion, and time for task completion mediate the 

relationship between attractiveness and software/support quality. 

 

i 

 



iv 
 

On the side of attractiveness‟ causes, it was proposed and tested that five open software 

projects‟ characteristics (license type, intended audience, type of project and project’s life-

cycle stage) impact attractiveness directly. Additionally, these projects‟ characteristics were 

argued to influence projects‟ levels of activeness, efficiency, likelihood of task completion, 

and time for task completion (and so an empirical evaluation of their associations was 

performed). The empirical tests of all these relationships between constructs were carried 

out using Structural Equation Modeling with Maximum Likelihood on three samples of over 

4,600 projects each, collected from the largest repository of open source software, 

Sourceforge.net (a repeated cross-sectional approach). The results confirmed the 

importance of attractiveness, suggesting a direct influence on projects‟ dynamics, as 

opposed to the moderated-by-task complexity indirect paths first proposed. Furthermore, all 

four projects‟ characteristics studied were found to significantly influence projects‟ 

attractiveness, activeness, efficiency, likelihood of task completion, and time for task 

completion (with the exception of license type and time for task completion). Besides 

providing a statistical test of these propositions, this study discovered the direction of the 

influence of each project characteristic on projects‟ attractiveness, activeness, efficiency, 

likelihood of task completion and time for task completion. Lastly, conclusions, limitations, 

and future directions are discussed based on these findings. 

 

 

 

 

 

 

 

ii 

 

 



v 
 

DEDICATION 

 

To those who find usefulness in this research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iii 

 

 



vi 
 

ACKNOWLEDGMENTS 

 

 I wish to thank CAPES and Fulbright for the financial support, SIUC for the 

structure provided, and Drs. John Pearson and Peter Mykytyn for the always-

open door and stable willingness to help me. Also, I would like to thank Dr. 

Robert Ping for the valuable insights on statistically testing the ideas here 

developed and the University of Notre Dame for the prompt access granted to 

the database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iv 

 

 



vii 
 

TABLE OF CONTENTS 

CHAPTER          PAGE 

ABSTRACT ........................................................................................................... i 

DEDICATION ....................................................................................................... iii 

ACKNOWLEDGMENTS ....................................................................................... iv 

LIST OF TABLES ................................................................................................. vi 

LIST OF FIGURES .............................................................................................. vii 

CHAPTERS 

CHAPTER 1 – INTRODUCTION ....................................................................... 1 

CHAPTER 2 – LITERATURE REVIEW AND MODEL DEVELOPMENT ........... 9 

CHAPTER 3 – METHODS ............................................................................... 38 

CHAPTER 4 – DATA DESCRIPTION AND STATISTICAL RESULTS ............ 65 

CHAPTER 5 – CONCLUSIONS, DISCUSSIONS AND FINAL REMARKS.... 105 

REFERENCES ................................................................................................. 119 

APPENDICIES 

APPENDIX A – SOURCEFORGE.NET PARTIAL E-R DIAGRAM................. 126 

APPENDIX B – CAPTURING THE EFFECTS OF LICENSE TYPE .............. 127 

APPENDIX C – COVARIANCE MATRICES (WITHOUT MODERATOR) ...... 128 

APPENDIX D – COVARIANCE MATRICES (MODERATION TEST) ............ 140 

APPENDIX E – MODERATION CONSTRAINTS (LAGRANGE TEST) ......... 142 

VITA ................................................................................................................. 143 

 

 

v 

 



viii 
 

LIST OF TABLES 

TABLE                                                                                                            PAGE 

Table 1 – Endogenous Constructs: Composition and Measurement .................. 44 

Table 2 – License Types and Codes in the Database ........................................ 48 

Table 3 – First-Level Types of Projects .............................................................. 49 

Table 4 – Exogenous Constructs: Composition and Measurement .................... 53 

Table 5 – Categorical Constructs and their Dummy Variables ........................... 68 

Table 6 – Classification of Licenses. .................................................................. 69 

Table 7 – Descriptive Statistics for Model 1 Testing (without moderator). .......... 74 

Table 8 – Frequency Table – Categorical (dummy) variables. ........................... 75 

Table 9 – Model-to-Data Fit Indices (without moderator). ................................... 82 

Table 10 – Equations to test propositions 1 to 8.5. ............................................. 91 

Table 11 – Decisions: Empirical Results on Propositions 1 to 8.5. ..................... 93 

Table 12 – Descriptive Statistics – Variables for Moderation Testing. ................ 99 

Table 13 – Model Comparison for Task Complexity Moderation Testing. ........ 103 

Table 14 – Equations: Attractiveness to predict the Dependent Variables. ...... 103 

Table 15 – Decisions on Propositions 9 to 12................................................... 104 

 

 

 

 

 

vi 

 



ix 
 

LIST OF FIGURES 

FIGURE                                                                                                         PAGE 

Figure 1 – Endogenous Constructs Theoretical Model ....................................... 22 

Figure 2 – Complete Theoretical Research Model ............................................. 36 

Figure 3 – Measurement Model .......................................................................... 57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vii

 

 



1 
 

CHAPTER 1 – INTRODUCTION  

The “Going Open Source” Software Strategy  

 

For an organization to utilize computer software, it must first decide on 

whether to develop it internally or rely on external developer(s) and remove itself 

from the software development function. This is a “make-or-buy” type of decision. 

The decision to make software internally implies the highest involvement over the 

development processes, given that the organization must manage its personnel 

capabilities towards the construction of a software application throughout the 

entire process. Alternatively, when a decision to buy is made, the relationship 

with a supplier must be managed instead. 

Of course, these two “pure” types of decisions are didactic as hybrid-types 

are possible, when part of the development function is performed inside and 

another outside the boundaries of an organization. Recently, this hybrid type of 

decision on how to deal with software development has become more common, 

as organizations began “to open source” their software. 

Open source (OS) software can be characterized as one that has its 

source code, as well as the software application, available to anyone for 

inspection, alteration and utilization (von Hippel & von Krogh, 2003). Frequently, 

the necessary toolset and documentation (coding practices and manuals) for 

development, inspection, and utilization are provided on a website, enabling 

users to contribute. When development tools and software source code are put 

together, an OS project is created. 



2 
 

An OS project may come to the attention of people, or organizations, with 

interests that lead them to join the project. When that happens, it can be said that 

a project has a community of software developers and contributors in general 

(volunteers or not) directly interested in improving and promoting the project and 

its software. 

OS communities of distributed contributors have been cited to explain the 

success of software like Linux, Apache, Sendmail, Firefox, and others. These 

software have been adopted by many and widely discussed by researchers in an 

attempting to understand and describe how their success is possible. As these 

ideas of how OS software were and are developed reached businesses, a 

corporate trend was born. 

The organizational strategy of “going-open” is supported by what 

researchers have called the “open innovation model”, where organizations are 

assumed to benefit from an open communication channel with hobbyists, 

improving services and products based on their inputs (O'Mahony, 2007; von 

Hippel, 2005). The assumption is that organizations should keep their boundaries 

open to external contributors, even though they must reveal internal processes 

and possible sources of competitive advantage to accomplish that. 

Attempts to open organizational boundaries to contributors have already 

been made by several organizations. To illustrate how these attempts can be 

identified, consider the four following examples. First, IBM has adopted Linux on 

some of its servers, and by that it adopts a software (a “buy” decision) from a 

third party (the Linux community of developers). Additionally, IBM has been 



3 
 

involved directly with Linux development activities, providing employees to 

develop this software. Accordingly, through this perspective, IBM “makes” and 

“buys” Linux. Therefore, in reality, a decision to buy, or to make, does not 

necessarily exclude the other as the expression “make-or-buy” implies. 

Furthermore, in another instance, IBM decided to release its Eclipse1, a platform 

initially developed inside the organization, as open source so that volunteers 

could contribute to it. Thus, similarly, IBM made Eclipse, which now is developed 

by external contributors as well. 

As a second example, Limewire “invite[s] all users interested in developing 

the Gnutella Network and its applications to join the LimeWire Open Source 

Project. Lime Wire LLC hopes to expedite Gnutella research and development by 

providing the core message passing and file sharing code so that one need not 

waste time re-writing it.”2 Limewire is an organization headquartered in New York 

City that developed a peer-to-peer file sharing application that “went open 

source” in October 2001. After that, Limewire has attempted to recruit volunteers 

by rewarding active members (contributors) with cash, prizes, internships, 

hirings, and, of course, by advertising these “rewards” through their website3. 

Given that Limewire has hired volunteers in the past, it also maintains non-

volunteers in its activities, relying only partly on volunteers‟ contributions. 

                                            

1
 “Eclipse is an open source community whose projects are focused on building an open 

development platform comprised of extensible frameworks, tools and runtimes for building, 
deploying and managing software across the lifecycle. A large and vibrant ecosystem of major 
technology vendors, innovative start-ups, universities, research institutions and individuals 
extend, complement and support the Eclipse platform.” http://www.eclipse.org/ - Accessed 
03/25/08 
2
 http://www.limewire.org/ - Accessed 02/10/2008 

3
 http://wiki.limewire.org/index.php?title=Bounties – Accessed 02/10/2008 

http://www.eclipse.org/
http://www.limewire.org/
http://wiki.limewire.org/index.php?title=Bounties


4 
 

Consequently, one could study Limewire as any other organization. It has 

expenses, such as payroll, and thus needs revenues to keep up with these 

expenses. To deal with that, Limewire sells Limewire PRO4 to generate revenue. 

Therefore, framed in this context, one might say that Limewire is another 

example of an adopter of the special “make-and-buy” strategy based on open 

source. 

Our third example is the producer of the Firefox Web browser, the Mozilla 

foundation. The OS community has supported Mozilla activities, participating not 

only in its web browser production, but also in its email client, Thunderbird, for 

years. Making it another “maker-and-buyer”, Mozilla maintains “a small product 

development team to work with contributors from around the world on 

Thunderbird software.”5 Mozilla has thousands of unpaid (volunteers) and paid 

contributors developing, designing and testing its projects‟ source codes and 

usability. This configuration has enabled Mozilla to be successful in competing 

against corporations such as Microsoft with its Internet Explorer. Nevertheless, 

Mozilla claims to not have business concerns such as profit or stock price as 

organizational goals, but simply to promote openness and opportunity on the 

Internet6. 

Fourth and lastly, SAP, through its Netweaver platform, is another adopter 

of the hybrid-form “make-and-buy”. SAP explicitly assumes that customers “may 

                                            

4
 The PRO version of Limewire provides “optimized search results, turbo-charged downloads, 

and FREE tech support”, among other things. http://www.limewire.com/download/pro.php - 
Accessed 03/25/08 
5
 http://open.itworld.com/4915/mozilla-thunderbird-email-080219/page_1.html  - Accessed 

02/20/08 
6
 http://www.mozilla.org/about/  

http://www.limewire.com/download/pro.php
http://open.itworld.com/4915/mozilla-thunderbird-email-080219/page_1.html
http://www.mozilla.org/about/


5 
 

have unique or emerging innovation needs that aren‟t met by an existing 

solution.”7 To fill this gap, SAP provides a diversity of environments referred to as 

SAP communities of innovation where members exchange information about 

SAP‟s products and help develop technical solutions. The SAP developer 

network, one of those communities of innovation, has over one million members8. 

To SAP, these members‟ contributions result in a code gallery9 with a large 

variety of software code, projects, and instructions to be used at SAP‟s own 

discretion; possibly benefiting SAP users too, as they test and find them useful. 

To attract new and reward existing contributors, SAP provides, as a form of 

recognition, a public rank of top contributors10. That rank is based on the number 

and type of tasks a member was able to accomplish. SAP assigns different 

points to different types of contributions, according to other members‟ input. 

Although SAP‟s software has not become an OS, strictly speaking, on its 

release (because the software source code is available only to customers), SAP 

makes sure to state that “open source and SAP are not a contradiction”11, 

attempting to keep itself attractive to open source advocators‟ contributions. That 

is because like any adopter of the open source hybrid-type of decision, SAP 

needs to face the challenge of attracting a “global army of independent 

developers” to support and develop its software (Farhoomand, 2007, p.9); and 

                                            

7
 

http://www.sap.com/ecosystem/index.epx?source=gawucesys01&kw=sap+netweaver&KW_ID=p
72863042 – Accessed 02/12/2008 
8
 http://www.sap.com/ecosystem/communities/sdn/index.epx - Accessed 02/12/2008 

9
 https://www.sdn.sap.com/irj/sdn/wiki?path=/display/Snippets/Home - Accessed 02/12/2008 

10
 https://www.sdn.sap.com/irj/sdn/topcontributors - Accessed 02/12/2008 

11
 https://www.sdn.sap.com/irj/sdn/opensource-integration - Accessed 02/12/2008 

http://www.sap.com/ecosystem/index.epx?source=gawucesys01&kw=sap+netweaver&KW_ID=p72863042
http://www.sap.com/ecosystem/index.epx?source=gawucesys01&kw=sap+netweaver&KW_ID=p72863042
http://www.sap.com/ecosystem/communities/sdn/index.epx
https://www.sdn.sap.com/irj/sdn/wiki?path=/display/Snippets/Home
https://www.sdn.sap.com/irj/sdn/topcontributors
https://www.sdn.sap.com/irj/sdn/opensource-integration


6 
 

the OS community is a great source of contributors who are capable of assuring 

the success of a software project as an organizational strategy. 

As shown, this software development strategy has been an adopted by 

many organizations, but it seems that it is also possible for many others such as 

governments and non-governmental organizations. This opportunity has already 

been identified as a strategy to become competitive “by outsourcing parts of the 

development to a passionate open source crowd.”12 Arguably, organizations that 

adopt this strategy, if successful, would reduce software development time and 

time-to-market, improve software quality, reduce costs, and increase the 

adopter‟s hiring pool of developers (Sharma, Sugumaran, & Rajagopalan, 2002). 

Public administrations such as the governments of Brazil, Denmark, 

China, Japan, South Korea and South Africa are known to prefer open source 

instead of proprietary software for acquisition cost reasons and so may become 

adopters of this hybrid-type of decision in two different forms (O'Mahony, 2007). 

These organizations might adopt a piece of software from an OS community and 

get involved in the development of the software (e.g., IBM and Linux), or they 

may release software developed internally in an attempt to receive external help 

(e.g., IBM and Eclipse). In either of these cases, the organization may benefit 

from studies of OS projects‟ dynamics to explain their likelihood of improving their 

software, and their organizations through contributors‟ inputs. This dissertation is 

an effort in that direction. 

                                            

12
 http://conferences.oreillynet.com/cs/railseurope2007/view/e_sess/13374 - Accessed 

01/31/2008 

http://conferences.oreillynet.com/cs/railseurope2007/view/e_sess/13374


7 
 

This dissertation presents a thesis that any open project‟s success 

depends on its level of attractiveness to potential contributors, expressed 

primarily by the project‟s number of members. A project‟s attractiveness has 

been considered an essential characteristic since the earliest OS software 

appearances. Raymond (1999, p. 27), in a document considered to have 

provided the foundations for the open source movement, stated that “given 

enough eyeballs, all bugs are shallow”. In other words, the more contributing 

members a project has, the easier it is for the project to be improved. 

Additionally, as more people join the project, the more diverse it becomes; and 

“pluralism can foster quality” and innovation (O'Mahony, 2007, p. 146). 

We propose that a project‟s attractiveness influences a project‟s levels of 

activeness, efficiency, likelihood of task completion, and average time to 

complete tasks. Additionally, we posit that these relationships are not linear 

because a project‟s software complexity moderates them. To connect 

attractiveness with “quality” and “success”, it is proposed that activeness, 

efficiency, likelihood of task completion, and time for task completion mediate the 

relationship between attractiveness and “software quality” or “project success”. 

Finally, our model proposes that four open software projects‟ characteristics 

(license type, intended audience, type of project, and project’s life-cycle stage) 

influence attractiveness, activeness, efficiency, likelihood of task completion, and 

time for task completion. 

The rest of this dissertation presents first a literature review of the 

concepts related to OS software projects and their dynamics. Next, two 



8 
 

theoretical models are developed in chapter 2. One that contains only the 

endogenous13 constructs of the model, and another that contains both 

endogenous and exogenous14 constructs, which was empirically tested. 

In chapter 3, we present the “methods” to test our developed model. This 

section proposes a repeated cross-sectional approach using Structural Equation 

Modeling (SEM) to accomplish the necessary statistical tests. Data from 

Sourceforge.net, the world‟s largest repository of OS projects, populated our 

samples. Details on how the data will be collected are also presented. 

In chapter 4, the statistical results of the analysis are presented, providing 

grounds for the discussion and concluding remarks section, which appears in 

chapter 5. The dissertation ends with a discussion of what we believe are our 

contributions to both researchers and practitioners, shedding new light into 

previous research to open new possibilities for future studies and generating 

managerial knowledge to be applied in the marketplace. 

 

 

 

 

 

 

 

 

                                            

13
 In Structural Equation Terminology, endogenous variables are ones that are caused by other 

variables in the model. 
 
14

 Exogenous variables are ones that are not caused by other variables in the model. They 
influence other variables, but are not influenced by any. 



9 
 

CHAPTER 2 – LITERATURE REVIEW AND MODEL DEVELOPMENT 

 

This section is organized as follows. First, a brief presentation of open 

source software and their communities is made. Second, attractiveness is 

discussed in the context of OS projects, and an argument of how attractiveness 

is expected to influence OS project outcomes, leading to success or failure, is 

developed. Third, a discussion of what success has been considered for (open 

source) software development projects is presented, closing the literature review 

and opening the model development section. 

In developing our theoretical model, the endogenous constructs of the 

theory with their respective relationships are presented. Next, the exogenous 

constructs of the model and their respective relationships with the endogenous 

constructs are presented and added to the first model, generating the complete 

theoretical model. 

 

Open Source Communities and Software 

 

 Many services available on the Internet rely on open source software and 

practices, but because these software and practices work in the background of 

those services, they may go unnoticed by many users. Google, Amazon, Ebay, 

and Wikipedia are a few examples of such services15
. Furthermore, over fifty 

                                            

15     
The Economist - Edition of March 16th, 2006 

http://www.economist.com/displaystory.cfm?story_id=E1_VGNQJQQ  

http://www.economist.com/displaystory.cfm?story_id=E1_VGNQJQQ


10 
 

percent of the websites on the Internet use Apache16, a web server software 

developed by volunteers and a variety of organizations. 

An open source community is a group of developers geographically 

dispersed and connected together through information and communication 

technologies based on the Internet to develop software (Herbsleb & Mockus, 

2003). Open source communities are composed of “hobbyists”, but the number 

of paid “volunteers” developing open source software is increasing due to the 

recent involvement of corporations in the movement (Fitzgerald, 2006). 

These communities‟ software application, and their source code, are 

almost always made available free of charge on a website, which provides the 

necessary conditions for the software to be improved by anyone willing to join the 

project and contribute to it. Some open source software have become very well 

known, such as the web server Apache, the operational system Linux, the office 

automation package OpenOffice.org, and the web browser Firefox. 

After these projects and their adopted managerial methods demonstrated 

their feasibility, producing high-quality software, corporations‟ attention turned to 

studying and mimicking “open source practices” as a way to deliver business 

value. Accordingly, many corporations have released their software to the open 

source community, opening up their internal processes and engaging in a 

strategy dependent on their OS project‟s attractiveness to be successful. 

 

 

                                            

16
 http://news.netcraft.com/ - Accessed on April, 17

th
, 2008. 

http://news.netcraft.com/


11 
 

Open Source Project‟s Attractiveness and Its Importance 

 

Open source software has been around for over fifteen years, and its 

impact on the software market has increased along with the increasing 

investments of corporations such as IBM and Sun in their projects (Fitzgerald, 

2006). 

The importance for OS projects to attract volunteers has been established 

in the literature (Koch, 2004; Krishnamurthy, 2002; Stewart & Gosain, 2006; von 

Krogh, Spaeth, & Lakhani, 2003). This necessity combined with the enormous 

and increasing quantity of existent OS projects stimulate competition (West & 

O‟Mahony, 2005). This increasing competition for volunteers creates an 

environment where some projects, by being more attractive than others, become 

more likely to be chosen by volunteers. A project‟s ability to attract volunteers is 

labeled as its attractiveness. 

Although attractiveness is a necessary condition, by itself it is not capable 

of generating all desirable outcomes for an OS software development project. 

Assuming that the goal of a project is its improvement, to receive inputs (e.g., 

bug reports and feature requests) and generate outputs (e.g., source code) are 

also essential and necessary conditions for software improvement. Accordingly, 

the effects of the number of attractiveness (number of members) on productivity 

needs to be further explored (Crowston, Annabi, Howison, & Masango, 2005; 

Crowston & Scozzi, 2002; Koch, 2004). These abilities to receive inputs and 

generate outputs are labeled project activeness and efficiency, respectively. 



12 
 

The need to include these constructs, activeness and efficiency, in open 

source studies has been previously discussed in the literature and appears, 

together with project attractiveness, to represent a more complete picture of what 

a project‟s sponsor would be looking for when launching an OS project (Stewart 

& Gosain, 2006). Obviously, in the competitive arena for volunteers‟ attraction 

and time devotion, well-established projects such as Linux, Apache, PHP and 

Mozilla are ahead. These projects are very well known in the marketplace and 

therefore provide a better opportunity for developers to have their self-interests 

fulfilled. Also, one might expect developers with higher skills to go after those 

well-established projects as less-known projects would not add to their 

marketability. 

This scenario leaves smaller and less known OS software projects, which 

represent the majority of these types of projects, at a disadvantage, justifying our 

decision to focus on them in our study. Accordingly, this research will exclude the 

well-known “successful” cases from its analysis as they may be considered 

outliers. Instead, we will focus on OS projects that do not have a significant 

reputation in the marketplace to function as a recruiter of volunteers; providing a 

picture of the cases of interest for this research, where “unknown” organizations 

(will) attempt to go “open source”. Thousands of these projects are found on 

online repositories such as SourceForge.org. 

To study these OS projects, first we need to understand what success 

means in their context so that we can imagine how it can be achieved. 

 



13 
 

Open Source Software Development Success 

 

Researchers have pointed out that only a few OS projects such as Linux, 

Apache, MySQL and PHP have been successful, whereas the majority of the OS 

projects have failed (Long, 2006; Thomas & Hunt, 2004). However, the basis for 

reaching that conclusion is frequently not explicitly stated. What makes an OS 

project (un)successful? For example, why is Azureus, a project that develops a 

peer-to-peer client, has 26 members, been downloaded over 100 million times17, 

been translated in over 25 languages, and has been developed for almost 4 

years, considered not successful? Moreover, can an unsuccessful project 

become successful or vice-versa? Without a bounded definition of success, one 

is not able to defend an answer to these questions on objective grounds. 

Previous research has defined success on a variety of bases though 

without the achievement of consensus (Crowston et al., 2005; Long, 2006). 

Among those measures, we were able to identify source code modularity (Shaikh 

& Cornford, 2003), number of lines of code generated (Mockus, Fielding, & 

Herbsleb, 2000), velocity of closing bugs (Stewart & Gosain, 2006), and the 

number of downloads (Crowston, Annabi, Howison, & Masango, 2004; 

Krishnamurthy, 2002; Stewart & Gosain, 2006). Moreover, Raja and Tretter 

(2006) and Crowston and Scozzi (2002) see success as the ability of a project to 

advance through development phases (e.g., from alpha to beta to stable), and 

                                            

17
 Information collected from the Sourceforge.net website on May, 20

th
, 2007. 



14 
 

Koch (2004) and Crowston and Howison (2006) suggest the use of community 

size (i.e., number of members) as a representation of success. 

From a different perspective, Weiss and Poland (2006, p.1) defined a 

project‟s popularity level “as being proportional to the number of Web pages that 

mention this project somehow.” They hypothesized that a measure of popularity 

should correlate with the number of reported bugs and features requested, 

meaning success. However, this predicted relationship was not found significant, 

suggesting that either their measures of popularity are not good indicators of 

success, or that there is not, in fact, a correlation between them. 

Much closer to our goals, Stewart and Gosain (2006) adopted a construct 

labeled efficiency as a dependent variable. They divided this variable into two 

sub-constructs. One is composed of the attraction of inputs from the 

development community, and the other represents the observable outcomes 

such as fixing bugs and adding features to the software. Similarly, Herbsleb and 

Mockus (2003) adopted a dependent variable that measured speed of task 

accomplishment, touching on items such as activeness and efficiency indirectly. 

Their main finding was that distributed software development activities take 

longer to complete than non-distributed ones due to more people being involved 

in the decision-processes. 

Although all those mentioned above can be useful measures individually, 

we argue that success, regardless of the chosen definition, for open software 

projects can be better represented through a combination of them. Accordingly, 

we propose that the levels of attractiveness, activeness, efficiency, likelihood of 



15 
 

task completion, and time for task completion can explain success better. 

Noteworthy is that we do not intend to study success itself, but constructs we 

argue to be necessary to its achievement, independent of the project‟s 

owner/founder/sponsor goals. The composition of these five endogenous 

constructs is discussed next in the model development section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

Theoretical Model Development 

Endogenous Variables 

 

Before an OS project receives contributions of any kind, it has to be 

attractive to volunteers, who first decide to join the project and only later to 

provide inputs and/or develop outputs to its improvement. Accordingly, we argue 

that attractiveness comes before activeness, efficiency, likelihood of task 

completion, and time for task completion. Additionally, we argue that these five 

constructs should be highly desirable things for open software projects because 

they are antecedents of other constructs such as software/support quality and 

competitive advantage (i.e., differentiation for attraction of volunteers and inputs). 

Therefore, there is a need to understand their compositions and relationships 

before studying their links with other constructs, as either causes or 

consequences, if one wants to move towards a more complete understanding of 

these communities‟ dynamics. Next, each of the five constructs is presented 

separately, followed by a section on how they are connected together. 

 

Attractiveness 

 

Attractiveness is defined as the project‟s ability to call the attention of a 

potential member and, eventually, fulfill his or her self-interests, causing him or 

her to join the project (Crowston et al., 2005; Stewart & Gosain, 2006). Due to 

our inability to measure this construct directly, which would imply asking people 



17 
 

randomly on their willingness to join and participate on a series of projects, we 

measure this construct based on three of its outcomes, or empirical expressions.  

Attractiveness of any project can be captured through the combination of 

the number of people that joined the project, the number of visits (hits) to the 

project‟s website, and the number of times the software or its code was 

downloaded, up to the point of measurement. Along these lines, a project‟s 

attractiveness is a dynamic construct that may change over time, possibly 

affecting its position on an attractiveness rank, if such was built. 

Specifically, project A is said to be more attractive than project B during a 

certain period of time if A has more website hits (visits) than project B, everything 

else constant. Similarly, a highly attractive project is one that has been 

downloaded more times than a less attractive one, again, ceteris paribus. Finally, 

and the most important representation of attractiveness, the number of members 

a project has should be influenced by its attractiveness. The more attractive a 

project is, the more members it has, and will have. We expect these three 

different measures of attractiveness to be significantly correlated with each other, 

but not highly, given that to visit a project‟s website is one step before 

downloading its software, and that these do not necessarily lead to a “join 

project” decision. Additionally, there is still the fact that one might aim solely to 

use the software, ending their participation after visiting the website and 

downloading the software. 

Another way to illustrate how the relationships among these empirical 

measures of attractiveness work is noticing that web sites that host OS projects 



18 
 

advertise ranks of most downloaded and active projects, increasing the visibility 

of the top ones18 in an attempt to get them more visits, downloads and members. 

An OS project‟s attractiveness is crucial for many reasons such as the 

thesis that it indirectly leads to higher level constructs such as quality because 

more “eyeballs” (contributors) find and fix more bugs, and request and develop 

more software features. Additionally, empirical studies suggest that an 

organizations‟ likelihood to fail decreases as their size (e.g., number of 

employees) increases (Baum & Oliver, 1991). 

 

Activeness 

 

After a person has become a member, his or her contributions to the 

project are still “one-step” away. Activeness in the context of open software 

communities is defined as the project‟s level of input generation such as feature 

requests and bug reports (Raja & Tretter, 2006; Stewart & Gosain, 2006). The 

more a project receives inputs of any kind by its members, the more active it is. 

This, we argue, should be the second construct of concern of a projects‟ 

sponsor/owner/founder, because this is what creates opportunities for software 

improvement by the project‟s members. A bug is not fixed through the project if it 

is not reported, and a feature is first requested and only then, hopefully, 

implemented. Therefore, if a project is to evolve, it must be through activeness. 

We argue that attractiveness is an antecedent, and an influencer, of activeness. 

                                            

18
 http://sourceforge.net/softwaremap/ 

http://sourceforge.net/softwaremap/


19 
 

Efficiency 

 

Efficiency is a project‟s ability to complete or accomplish a given task. A 

task is originated by an input received (activeness), and it might or might not be 

completed. When a task is completed, it enhances a project‟s index of efficiency. 

In the OS projects context, bugs reported are closed, and features requested are 

developed (Crowston et al., 2005; Fershtman & Gandal, 2007; Raja & Tretter, 

2006; Stewart & Gosain, 2006). Once one has a measure of efficiency of a set of 

projects at hand, one may rank-order these projects using this measure. Further, 

one could attempt to relate this variable with another. We logically derive that it is 

necessary that a member (attractiveness) report a bug (activeness) for it to be 

solved (efficiency). Therefore, in the very first “lap” of a project‟s development 

activities, efficiency is the last of the three to express itself. 

It is the main thesis of this research that the more efficient an OS software 

project is, the more likely it is to succeed by having higher quality software and 

providing better support to the software users. Briefly, the success of the “going-

open” strategy is dependent on efficiency, closing bug reported on time and 

providing new features to users as needed. Additionally, the lack of efficiency 

would condemn a software to its current state driving it away from the changing 

users‟ demands. That, nevertheless, is valid only in the case where there are no 

software development activities taking place out of OS project‟s boundaries. But 

even if there are software activities outside the project, that does not negatively 

affect our study because we are evaluating the OS project per se (i.e., whether 



20 
 

the project “works” or not, or whether it provides a useful environment for 

improvement of the software or not). 

As a project resolves its raised issues (e.g., bugs) and develops its index 

of efficiency, two other pieces of useful information become available: the 

project‟s overall likelihood of solving its tasks and the average amount of time 

spent to solve them. Next, we present these two as the last endogenous 

constructs. 

 

Likelihood of Task Completion and Time for Task Completion 

 

When one is interested in production activities or service providing of any 

kind, to be able to solve problems within a reasonable amount of time is an 

essential ability for success. Specifically, in the open source literature this has 

appeared as, for example, “[t]he more readily developers can recognize the 

needs and problems addressed by the project, the more successful the [OS 

software] project” (Crowston & Scozzi, 2002, p.10). Accordingly, we include 

these two as endogenous variables hoping to uncover patterns able to benefit 

adopters of the “going-open” strategy. 

Essentially, we argue that the more likely a project is to get open tasks 

closed, and the faster it does so, the better off it would be. Therefore, the study of 

patterns and influencers of a project‟s likelihood of task completion and time for 

task completion is justified from a managerial perspective. We will now present 

our five endogenous constructs connected together in the form of a model. 



21 
 

Relationships between Endogenous Variables 

 

As stated previously, this paper‟s main thesis is that the level of 

attractiveness of a project should correlate with all main constructs of interest to 

managers/founders of these open source initiatives. We agree with the 

literature‟s assumption that diversity leads to quality through innovation, reducing 

costs and creating new opportunities in the future (O'Mahony, 2007; von Hippel & 

von Krogh, 2003). Diversity in the context of a project can be translated as its 

number of contributors, influencing its inputs and outputs. Accordingly, we have 

as the main cause of success of an open project its attractiveness. We argue that 

attractiveness is capable of influencing projects‟ activeness, efficiency, likelihood 

of task completion, and time for task completion. Therefore, the impact of 

attractiveness on these constructs is capable of driving a project to either 

success or failure. To express these relationships formally, we have developed 

four propositions, which are presented next and depicted in Figure 1. 

Proposition 1: A project‟s attractiveness is a significant predictor of a 

project‟s activeness. 

Proposition 2: A project‟s attractiveness is a significant predictor of a 

project‟s efficiency. 

Proposition 3: A project‟s attractiveness is a significant predictor of a 

project‟s overall likelihood of task completion. 

Proposition 4: A project‟s attractiveness is a significant predictor of a 

project‟s average time for task completion. 

 



22 
 

 
Figure 1 – Endogenous Constructs Theoretical Model 

 

 The following section describes, one-by-one, the exogenous variables 

(project‟s characteristics) proposed to influence directly each of the identified 

endogenous constructs. The section finishes with a revision of the first four 

propositions to account for the expected moderation effect of task complexity. All 

propositions developed in the next section are depicted in Figure 2.  

 

Exogenous Variables (Endogenous‟ Influencers) 

 
We recognize that a variety of exogenous variables may influence 

attractiveness, activeness, efficiency, and likelihood and time of task completion. 

There is a widely accepted paradigm in the open source software literature that 

explains voluntary contribution based on contributor‟s intrinsic motivations, 

especially to receive compensations such as job offers (Crowston & Scozzi, 

2002; O'Mahony, 2007). We do not challenge this view. We recognize it, but also 

believe that the “soft” nature of this construct makes it too difficult to conduct any 

 

P4 

P3 

P2 

P1 

Attractiveness 

Likelihood of 

Task Completion 

Time of Task 

Completion 

Efficiency 

Activeness 

Software Quality 

(success/failure) 



23 
 

large empirical study that seeks practical managerial knowledge development. 

Alternatively, we argue that one‟s intrinsic motivation drives him or her to a 

project with such characteristics, which we study, that fulfill one‟s intrinsic 

motivations. Additionally, we believe that besides one‟s intrinsic motivations, 

one‟s technical knowledge (expertise) also plays an important role in explaining 

his likelihood to join and contribute to a project, as well as at what speed. 

Based on that, we focus on “hard variables” and attempt to identify which 

project‟s characteristics are able to fulfill more, or less, intrinsic motivations than 

others. These “characteristics of the application” have been suggested in the 

literature to be linked with OS project‟s likelihood of success in the past 

(Crowston & Scozzi, 2002). 

Below we present four project characteristics capable of influencing the 

endogenous variables of focus to this dissertation directly, and another variable 

said to moderate the relationships between attractiveness and the other 

endogenous variables. 

 

 

 

 

 

 

 

 



24 
 

Project Characteristics 

License Type 

 

Every software part of a “going-open” strategy needs a license attached to 

it. This license regulates what can and cannot be done with the software and its 

source code, influencing its range of use and rules for alterations. For instance, 

no source code under the General Public License (GPL) can be used in 

commercial software. Other licenses such as the Mozilla Public and the Eclipse 

Public are not as restrictive as GPL, permitting a better interaction between open 

and proprietary software (Fershtman & Gandal, 2007). To date, there have been 

no studies focused on describing their similarities and differences in details. 

Nevertheless, the interested reader might visit www.opensource.org/licenses for 

a thorough presentation of each license recognized by the open source software 

foundation (total 71), their scope, and characteristics. 

The influence of a project‟s chosen license (e.g., GPL, Berkeley Software 

Distribution, or Sun Industry Standards Source License) on its activities has been 

documented in the literature (Stewart, Ammeter, & Maruping, 2005). For 

example, Lerner and Tirole (2005) have examined how this choice is related to 

the project‟s target population, developers or end users. Moreover, Fershtman 

and Gandal (2007) have found that the type of license is associated with the 

number of contributions received by an OS project. 

The rationale behind this argument is that members‟ willingness to 

voluntarily contribute should be linked with the restrictions and allowances of 



25 
 

each license type, which could go, for example, against one‟s intrinsic motivation 

by restricting the visibility of one‟s work. A negative correlation between one‟s 

motivation and a restrictive (“less commercial potential”) license is suggested, 

given the assumption that volunteers‟ intrinsic motivation is to promote their work 

(Fershtman & Gandal, 2007). 

The influence of type of license on a project‟s outcomes has been 

discussed at the individual level, affecting a member‟s likelihood to contribute 

(Fershtman & Gandal, 2007), but not at the project level. We propose that this 

choice should have similar impacts at the project-level. We will not classify 

different types of licenses according to anything such as restrictiveness, given 

the lack of such information for all of them (Fershtman & Gandal, 2007). 

Accordingly, we will simply classify projects according to their type of license and 

do the appropriate analysis, leaving any inference on why they differ or not to a 

later moment, after empirical analysis, possibly suggesting hypothesis that are 

more specific. For now, the following propositions will guide our empirical 

analysis. 

  

Proposition 5.1: A project‟s license type is a significant influencer of its 

attractiveness. 

Proposition 5.2: A project‟s license type is a significant influencer of its 

activeness. 

Proposition 5.3: A project‟s license type is a significant influencer of its 

efficiency. 



26 
 

Proposition 5.4: A project‟s license type is a significant influencer of its 

overall likelihood of task completion. 

Proposition 5.5: A project‟s license type is a significant influencer of its 

average time to complete tasks. 

 

Intended Audience 

 

Every software project has a stated purpose or specific goals. It exists to 

support an organizational process or a set of processes. These benefited 

processes, especially inside an organization, affect the work of a person or of a 

group of people. This group benefited directly with the use of the software is 

called the “intended audience”. Our motivation to insert this variable in our model 

is similar to the idea of niche in marketing. The bigger the niche, the higher one 

should expect sales to be, everything else constant. Or, in the context of open 

source projects, some of them “have a greater number of potential developers in 

the community than others do” (Johnson, 2002, p. 664, p. 664). Similarly, these 

different types of audiences should attract different numbers of members as well 

as specific types of members (e.g., system administrators) which we argue to be 

linked to one‟s expertise and then one‟s likelihood to contribute. 

The influence of intended audience on OS projects has been discussed in 

the literature. Crowston and Scozzi (2002) pointed out that projects that have 

their software targeted to developers tend to be more active than ones that are 

targeted to systems administrators, which in their turn, tend to outperform ones 



27 
 

targeted to a non-technical audience (users). Additionally, these same authors 

pointed out that there are more OS projects with software aimed at fulfilling 

developers‟ and end users‟ than system administrators‟ needs. Therefore, these 

different projects‟ population (niche) sizes are likely to influence their competitive 

dynamics for recruiting contributors. 

Furthermore, Fershtman and Gandal (2007, p.222) have observed that 

“[o]utput per contributor in projects oriented towards end users […] is significantly 

lower than that in projects for developers.” They explained this by pointing out 

that perhaps software aimed at end users is of less commercial value than those 

aimed at developers, once again grounded in the member‟s intrinsic motivation of 

signaling assumption (Fershtman & Gandal, 2007). 

In the OS software projects context, the intended audience of a project 

can be (1) end user, (2) systems administrator, (3) developer, or any combination 

of them. We will take the same inductive approach we did for license type for 

intended audience. Accordingly, we do not hypothesize on the directionality of 

this influence, although we expect it to occur, as previous research has 

suggested. Nevertheless, the following propositions will guide our empirical 

analysis. 

 

Proposition 6.1: A projects‟ choice of intended audience significantly 

influences its attractiveness. 

Proposition 6.2: A projects‟ choice of intended audience significantly 

influences its activeness. 



28 
 

Proposition 6.3: A projects‟ choice of intended audience significantly 

influences its efficiency. 

Proposition 6.4: A projects‟ choice of intended audience significantly 

influences its overall likelihood of task completion. 

Proposition 6.5: A projects‟ choice of intended audience significantly 

influences its average time for task completion. 

 

Type of Project 

 

Just as OS projects have an intended audience, they also have focus on a 

specific area. Projects are of a specific type, as Sourceforge.net classifies them. 

A project‟s topic is capable of giving another clue of what a project is all about. 

Projects might be related to genealogy, payroll, online chatting (e.g., ICQ), 

browser, games, and many others. They can also be of a combination of them, 

which creates a methodological challenge due to the difficulty of grouping them 

(Crowston & Scozzi, 2002). 

Once again, we argue that the project type is capable of influencing a 

project‟s activities because we do not believe people choose their projects at 

random. Arguably, available topics guide one to a specific area of interest, and 

they may even account for the attraction of specific groups of people with specific 

types of expertise, influencing directly project‟s activities. 

The type of project has been discussed in the open source literature. For 

instance, Crowston and Scozzi (2002, p.18) have pointed out that “projects 



29 
 

(software) dealing with topics that are familiar with developers (such as Internet 

or communication topics) will be more active and in a more advanced 

development status than those that address very specific needs, such as religion 

or scientific/engineering.” According to Crowston and Scozzi (2002), the type of 

project is a significant influencer of project success (i.e., number of downloads 

and views, development status, and intensity of work). 

Furthermore, the influence of project type has been argued to be derived 

from its link with the project‟s targeted population, developers or end users 

(Crowston et al., 2005; Crowston & Scozzi, 2002). Additionally, empirical 

evidence has shown that the distribution of projects by type is not a balanced 

one, raising possibilities of different levels of competition in each, given that 

these project types are capable of separating them by audience. Most projects 

are of software development or are related to systems topics. Minorities are 

composed of office or business topics (Crowston & Scozzi, 2002). 

We take the approach we did for the other predictors to assess the degree 

of influence, if any, of type of project. We argue that there should be an influence 

on our endogenous variables as described in the literature, but we opt to not 

hypothesize on the directionality of this influence because no attempt to date was 

made to measure each topic influence on project‟s activities. Accordingly, it is not 

possible to guess the direction of such influence for each type of project. 

Nevertheless, propositions to guide empirical analysis were developed and are 

presented below. 



30 
 

Proposition 7.1: A project‟s choice of topic is a significant influencer of a 

project‟s attractiveness. 

Proposition 7.2: A project‟s choice of topic is a significant influencer of a 

project‟s activeness. 

Proposition 7.3: A project‟s choice of topic is a significant influencer of a 

project‟s efficiency. 

Proposition 7.4: A project‟s choice of topic is a significant influencer of a 

project‟s overall likelihood of task completion. 

Proposition 7.5: A project‟s choice of topic is a significant influencer of a 

project‟s average time for task completion. 

 

Development Status (Project‟s Life-cycle Stage) 

 

Any software can be classified based on its current state in what the 

literature refers to as the software life-cycle. This status of the software is often 

used as a strategy. For example, corporations often release beta versions of their 

software so that people can evaluate it and provide feedback to them. In doing 

so, the organization safeguards its image in case bugs are found, given that an 

assumption of a beta version is that it is a prototype and not a ready-for-the-

market piece. 

Most OS projects maintain their software status readily available to their 

members. Potentially, this status might influence one‟s decision to join and 

contribute to a project as one evaluates whether that project would be a “good” 



31 
 

one to have his or her image attached to. Additionally, projects at different stages 

might show different levels of activeness and efficiency, as it might affect its 

members‟ motivation to release a new version, for example. Based on that, we 

decided to incorporate a project‟s development status in our model and 

empirically test its degree and direction of influence in our endogenous variables. 

The relationship of the software development status (e.g., beta, stable, or 

production) with the success of an open software project has been previously 

discussed (Crowston & Scozzi, 2002; Raja & Tretter, 2006; Stewart & Gosain, 

2006). Mainly, these studies discussed a project‟s ability to advance throughout 

its development statuses as success, being predicted by variables such as 

project audience and developer ideologies. That stream of research argues that 

a more mature project is more successful. Our view differs from this in that we 

argue that these changes in a project‟s development status may influence 

attractiveness, activeness, and efficiency, but do not necessarily indicate 

success, given that this influence, theoretically, might be negative to them. 

Furthermore, most of the software that has been considered successful (such as 

Windows or Linux) has achieved the last status on their life cycle (i.e., stable); 

nevertheless they are still (and have to be) active and efficient, as understood in 

this paper, to maintain or enhance their market positioning. 

Simply put, an inactive or inefficient project leads to failure in the long run 

from a marketing perspective no matter what the project current life-cycle stage 

is. Additionally, we do not expect that these changes from one life-cycle status to 

another will influence a project‟s attractiveness, activeness, efficiency, task 



32 
 

completion, and time for task completion equally. Therefore, we will analyze each 

possible life-cycle stage separately, looking for clues on whether a project status 

influences its dynamics and to which direction. 

This approach can potentially provide hints to managers on what to expect 

as their projects evolve throughout different phases. We believe that the 

directionality of this influence should be analyzed on a case-by-case basis, and 

therefore opt to not hypothesize on the directionality of these relationships, 

adopting an inductive approach for theory development. Nevertheless, 

propositions were developed to guide the empirical analysis. 

 
Proposition 8.1: A project‟s development status is a significant influencer 

of a project‟s attractiveness. 

Proposition 8.2: A project‟s development status is a significant influencer 

of a project‟s activeness. 

Proposition 8.3: A project‟s development status is a significant influencer 

of a project‟s efficiency. 

Proposition 8.4: A project‟s development status is a significant influencer 

of a project‟s overall likelihood of task completion. 

Proposition 8.5: A project‟s development status is a significant influencer 

of a project‟s average time for task completion. 

 

 

 

 



33 
 

The Moderation Effect of Task Complexity 

 

Social-cognitive factors such as affective trust were found to significantly 

predict an OS project‟s size (i.e., number of members) and their level of 

activeness (Stewart & Gosain, 2006). However, contrary to our argument that 

attractiveness leads to activeness and efficiency, attractiveness (represented by 

the number of a project‟s members) was not able to explain task completion or 

team effort significantly (Stewart & Gosain, 2006). Therefore, although the 

presence of members is a necessary condition to generate outcomes, this finding 

suggests, at least, that a linear relationship is not likely to exist between the 

number of members and a project‟s activeness and efficiency levels. Accordingly, 

the inclusion of other variables in the analysis is necessary to explore this issue 

further. 

We argue that the reason Stewart and Gosain (2006) did not find a 

significant relationship between number of members and a project‟s outcomes is 

because of a factor not accounted for in their paper, the complexities of the 

software (tasks). In an attempt to clarify this unexpected finding, which goes 

against what we predicted in propositions 1 to 4, we include this complexity 

measure in our model. The complexity of the software can be partially captured 

by the degree of interdependence among software tasks (C. R. B. DeSouza, 

Redmiles, Cheng, Millen, & Patterson, 2004a; C.  R.  B. DeSouza, Redmiles, 

Cheng, Millen, & Patterson, 2004b). 



34 
 

Stewart and Gosain (2006) proposed that the number of members does 

not influence a project‟s activities because of differences in expertise among 

volunteers, or to an unbalanced distribution of expertise across projects. 

Accordingly, we have included in our model a variable that separates projects 

based on different categories, audiences, and license types. We argue that one 

should expect to find similar members‟ expertise within each of these groups of 

projects (e.g., clustering or genealogy), also separated by license and intended 

audience. Furthermore, the high number of unexpected findings in Stewart and 

Gosain‟s (2006) study is encouraging of replications and alternative answers for 

the same question of what predicts activeness, efficiency, task completion, and 

time for task completion. 

Software modules (tasks) might be dependent on each other in several 

ways. It is the degree of this interdependence among modules that is referred to 

as interdependence or cohesion in the literature. Baldwin, Carliss and Clark 

(2003) demonstrated that modular projects have advantages in recruiting 

contributors. They grounded their argument on the reasoning that the more 

modules or slices one project has, the more opportunities it offers, increasing 

members‟ likelihood to contribute. However, one thing that cannot be set aside is 

that the quantity of modules is expected to influence interdependence, which is 

assumed here to be a proxy for task complexity, thereby inverting the 

relationship. A potential trade-off exists here. 

 Especially in the open software case, in which people work geographically 

dispersed and the main communication medium is e-mail or list-servers, 



35 
 

interdependence might be expected to be one of the main factors for 

attractiveness (West & O‟Mahony, 2005). Moreover, the relationship between 

interdependence and contributions was studied by DeSouza et. al. (2004a) and 

DeSouza et. al. (2004b). They demonstrated that software with low 

interdependence is more likely to receive contributions than those with high 

interdependence. That is because low interdependence facilitates the source 

code inspection function (debugging), software testing, comprehension, 

maintenance and parallelization (Counsell & Swift, 2006; Xu, Qian, Zhang, Wu, & 

Chen, 2005). Furthermore, Koch and Schneider (2002), in their study of the 

GNOME project, found that developers worked in isolation on different modules, 

which is arguably essential for parallel and distributed activities such as in the 

case of OS projects (Fitzgerald & Feller, 2002). Finally, Stamelos et al. (2002) 

have discussed the importance of modularity and of a well structured piece of 

software on open source type of endeavors. According to Fitzgerald and Feller 

(2002), this is not a surprising conclusion, given the connection of modularity and 

productivity is part of the basic principles of software development. 

In accordance with the literature, we argue that volunteers prefer to be 

able to work independently and on simpler tasks. So, at first glance, one should 

expect administrators of “going-open” strategies to build systems with modules 

(tasks) interdependences as low as possible because of the relationship between 

interdependence and source code programming and learning difficulty. Thus, a 

manager‟s decision regarding the degree of interdependence is crucial and 

complex. And for being complex, rationality may fail to prevail for different 



36 
 

reasons in such a decision. First, features are requested by members and 

therefore are not in control of the manager (software development activities are 

expected to suffer pressure from users for richness). Second, market strategies 

might push deadlines (Mockus & Herbsleb, 2002). And third, a version of the 

software might have been already developed when the decision to release it 

open is taken. 

In sum, two factors, quantity of modules (quantity of opportunities or tasks 

offered) and their degree of dependencies on other modules, which is used as 

proxy for task complexity, are expected to influence each other and, 

consequently, the number of contributions received (i.e., activeness and 

efficiency) due to the increasing costs of „understanding‟ the task. Thus, we 

revise our first four propositions to the following form and show them in Figure 2. 

Proposition 9: The overall complexity of a project‟s tasks moderates the 

relationship between attractiveness and activeness. 

Proposition 10: The overall complexity of a project‟s tasks moderates the 

relationship between attractiveness and efficiency. 

Proposition 11: The overall complexity of a project‟s tasks moderates the 

relationship between attractiveness and overall likelihood of task completion. 

Proposition 12: The overall complexity of a project‟s tasks moderates the 

relationship between attractiveness and average time of task completion. 

 

 

 

 



37 
 

 

Figure 2 – Complete Theoretical Research Model 

 

With the theoretical model developed and depicted in Figure 2, we will 

now turn to the discussion on how such model will be empirically tested. Chapter 

3 has a detailed description on data collection procedures and statistical 

analysis. 

 

 

 

 

 

 

 

 

 

 

 
Project 

Characteristics 

Project 

Characteristics 

P8.2 – P8.5 

P6.2 – P6.5 

P7.2 – P7.5 

P5.2 – P5.5 

P4  P12 

P3 P11 

P2  P10 

P1   P9 

P8.1 

P7.1 

P6.1 

P5.1 
License Type 

Intended Audience 

Type of Project 

Development Status 

Attractiveness 

Task Complexity 

Likelihood of 

Task Completion 

Time of Task 

Completion 

 

Efficiency 

Activeness 

License Type 

Type of Project 

Development Status 

Intended Audience 



38 
 

 

CHAPTER 3 – METHODS 

Description of the Website, Data Collection and Analysis Procedures 

 

Data Source 

The variety of OS projects is extremely large. On one extreme there is a 

project of the magnitude of Linux, and its kernel, that is supported by the Open 

Source Development Labs (OSDL), “a consortium formed by high-tech 

companies which include IBM, Hewlett-Packard, Intel, AMD, RedHat, Novell and 

many others.”19 On the other, there are thousands of individually-owned projects 

hosted and not hosted on websites like Sourceforge.net, Freshmeat.org and 

Tigris.net. These are “projects diverse in size, application domain and audience” 

(Raja & Tretter, 2006, p.4). 

The theoretical model developed in this paper will be tested against the 

Sourceforge.net database available for academic inquiry free of charge through 

the University of Notre Dame. We chose SourceForge.org because it is the 

largest repository of OS projects (Koch, 2004). It contains a diverse population of 

over 170,000 projects and 1.8 million registered members. Additionally, the 

readily available database for queries at the University of Notre Dame website 

provides an ideal opportunity for data collection and analysis to test theories 

(Crowston & Howison, 2006). Because of that, this source of data has been used 

by Crowston and Scozzi (2002) when testing their theory of competency rallying, 

                                            

19
 http://www.linux.org/info/linus.html  

http://www.linux.org/info/linus.html


39 
 

by Hunt and Johnson (2002) aiming to explain the number of downloads projects 

had, by Krishnamurthy (2002), who focused on the 100 most active projects, by 

Stewart and Gosain (2006), and others20. The data is available on a project by 

project, month by month basis (Fershtman & Gandal, 2007). 

 

Sample and Time Frame 

 

For the purposes of this research, we will filter the over 140,000 projects in 

the database and filter it to a more interesting sample. Accordingly, we decided 

to limit our analysis to the projects that conform to the two criteria that follows. 

First, we will exclude any project with only one member as these projects have 

not shown any attractiveness to anyone besides to its founder. Second, we 

decided to exclude any project that shows missing data on any of the variables 

we intend to collect. To ensure this last point, we will record only the identification 

numbers of those projects that have received at least one output (efficiency), 

implying then that they have already received at least one input (activeness).  

We decided to avoid data collection from any time period before 2006 due 

to purges and table redefinitions that occurred in the database in that period, as 

reported on the website managed by the University of Notre Dame. Also, given 

the amount of manual work that has to be done to collect all information needed, 

we decided to limit our analysis to only three points in time, regardless of all 

others available. Furthermore, we decided to space our data collection by one 

                                            

20
 See https://zerlot.cse.nd.edu/mywiki/index.php?title=Papers  

https://zerlot.cse.nd.edu/mywiki/index.php?title=Papers


40 
 

year from each other to allow enough time for the website composition as well as 

its projects dynamics to change substantially. Accordingly, our data collection 

activities will gather data from January/2006, January/2007, and January/2008. 

Repeated cross-sectional studies are known to give researchers higher 

confidence on the results because this approach works as a replication of the 

empirical test at the same time that it finds better estimates. In summary, with 

results of the same tests using data from different points in time at the same 

time, a researcher can evaluate how valid his proposed model is over time, 

reduce the likelihood of data collection errors, and increase his confidence in the 

estimates found (Hair, Black, Babin, Anderson, & Tatham, 2006). 

 

Database General Characteristic 

 

Previous studies that have utilized this database have found that a series 

of its variables show high skewness21, a characteristic that goes against many 

statistical tools‟ assumption of normality. Specifically, Crowston and Scozzi 

(2002) found that the distributions of number of downloads, page views, 

developers and administrators, and count of projects using a given programming 

language were highly skewed. They transformed these variables into their 

logarithmic function so to fix this problem. We intend to follow the same steps, if 

non-normality appears as an issue. 

 

                                            

21
 “Measure of the symmetry of a distribution.” (Hair et al., 2006, p. 40) 



41 
 

 

Endogenous Variables – Measurement and Location at the Database 

Attractiveness 

 

 Attractiveness is composed of three distinct empirical measures. The 

number of (1) hits (page views) the project has had; (2) the number of times the 

project has been downloaded; and (3) the number of members the project has. 

These three pieces of information are available in the Sourceforge.net database 

as shown in Table 1. 

 

Activeness 

 

 Every time a project is created in Sourceforge.net, it automatically 

receives four trackers22. These are (1) bug reports, representing the number of 

times users submitted software bugs to be reviewed and resolved; (2) support 

requests, representing the number of times end-users have made support 

inquiries; (3) feature requests, representing the number of times users submitted 

requests for software enhancement; and (4) patches submitted, representing the 

number of software source code extracts submitted for review. Accordingly, this 

construct will be measured as the sum of (1) the number of bugs reported, (2) the 

number of features, (3) support requested, and (4) the number of patches 

submitted. Based on our decision to not include projects with missing data, we 

                                            

22
 http://alexandria.wiki.sourceforge.net/Tracker+-

+Bug+Reporting,+Support+Requests,+Feature+Requests,+Patches  

http://alexandria.wiki.sourceforge.net/Tracker+-+Bug+Reporting,+Support+Requests,+Feature+Requests,+Patches
http://alexandria.wiki.sourceforge.net/Tracker+-+Bug+Reporting,+Support+Requests,+Feature+Requests,+Patches


42 
 

will collect all information available to each project and exclude projects without 

data on any of these four trackers. 

 Sourceforge.net stores information on these four trackers under a table in 

the database called “artifacts”. Although it is possible to classify an artifact 

according to its type (e.g., bug or request), it is also very time consuming and 

complicated because the information is in a text field requiring a content analysis. 

Fortunately, this separation is not of our interest here. Thus, we will collect these 

data as Sourceforge.net provides it to us straightforwardly, as the sum of the 

number of bugs, feature and support requests, and patches submitted for each 

project. These four pieces of information are available in the Sourceforge.net 

database as described in Table 1. 

 

Efficiency 

 

 The Sourceforge.net tracker system supports the management of software 

development activities of the projects. The tracker manages software issues 

through changes in their status. Four statuses are accepted: open (1), closed (2), 

pending (3), and deleted (4)23. For our purposes here, only those assigned 

closed status will be included in the measure of efficiency, given that “open”, 

“pending” or “deleted” tasks are included in our measures of activeness. 

Therefore, first bugs receive status of “open” and later, when fixed, they have 

their status changed to “closed”. Similarly, support requests are provided, feature 

                                            

23
 Coding information extracted from the actual table. 1-Open, 2-Closed, 3-Deleted, 4-Pending. 



43 
 

requests are added to the software, and patches are analyzed and closed. 

Accordingly, efficiency of these projects will be assessed by measuring four 

different variables: the number of (1) bugs closed, (2) features added (closed), 

(3) patches closed, and (4) support provided (closed). Again, not every project 

has data on all of them, forcing us to focus on what they have in the database. 

As with activeness, efficiency measures will be collected as one variable 

resulting from the sum of the number of bugs, features, patches, and support 

closed. These data are available in the Sourceforge.net database as described in 

Table 1. 

 

Likelihood of Task Completion and Time of Completion 

 

The measure for likelihood of task completion is the result of the sum of all 

measures of efficiency divided by the sum of all measures of activeness. This 

measure provides the probability of a project to solve its issues such as to close 

a reported bug or to develop a requested new feature for the software. Similarly, 

every time a created task (activeness) is completed (efficiency), a certain amount 

of time was required to do so. 

Time of completion will be calculated as the average amount of time a 

project takes to complete the tasks it does complete. Time stamps for tasks can 

be found in the Sourceforge.net database. Therefore, time intervals can be 

calculated by subtracting one from the other, and the average can be computed 



44 
 

by summing up all time intervals and dividing this sum by the number of 

completed tasks. 

In exploring these variables and tables to ensure the possibility of 

successful data collection, we found that some of the artifacts are “closed” but 

have a negative result in the operation (close date – open date). The artifacts 

table has a default value on the close_date field of 0. Therefore, when people 

don‟t fill it out, the information becomes inaccurate. We will exclude any negative 

values from our dataset. Moreover, the time format in the Sourceforge.net 

database is the Unix time format. It indicates how many seconds since January 

1, 1970 have passed. This format should not be a problem, given that a measure 

in seconds to complete tasks would fit as well as any other measure such as 

number of days. Additionally, we can transform this time intervals as we wish. 

Details for these two variables are found in Table 1. 

 
Table 1 – Endogenous Constructs: Composition and Measurement 

Construct Empirical 
Measures 

Database Table.Field How to Get the Data 
(SQL Queries and other 

transformations) 

Attractiveness Page 
view(hits) 

Top_group.pageviews_proj Select 
top_group.pageviews_proj
, top_group.group_id 

Downloads Stats_groupid_alltime_agg.do
wnloads 

Select 
stats_groupid_alltime_agg.
downloads, 
stats_groupid_alltime_agg.
group_id 

Members User_group.count(*) SELECT count(*), 
group_id FROM 
user_group group by 
group_id 

 
Activeness 

Bugs 
reported 

Count (artifact.status_id) SELECT 
artifact.group_artifact_id, 
artifact_group_list.group_i
d, artifact.status_id FROM 
sf0108.artifact, 
sf0108.artifact_group_list 
WHERE 

Features 
requested 

Support 
requested 

 



45 
 

Patches 
submitted 

artifact_group_list.group_a
rtifact_id=artifact.group_art
ifact_id 
<<Total number of 
Artifacts >> 
 
THEN 
Aggregate them by project 
(counting the number of 
tasks-artifacts). 
 
Replace missing values by 
0s. 

Efficiency Bugs closed Count (artifact.status_id= 2) SELECT 
artifact.group_artifact_id, 
artifact_group_list.group_i
d, artifact.status_id FROM 
sf0108.artifact, 
sf0108.artifact_group_list 
WHERE 
artifact_group_list.group_a
rtifact_id=artifact.group_art
ifact_id and 
artifact.status_id = 2 
<<Artifacts closed by 
project>> 
 
THEN 
 
Aggregate them by project 
(counting the number of 
tasks-artifacts). 
 
Replace missing values by 
0s. 

Features 
added 

Support 
provided 

Patches 
Analyzed 

Overall 
Likelihood of 
Task Completion 

(bugs closed + features added + support 
provided + patches analyzed) 
DIVIDED BY 
(bugs reported + features requested + support 
requested + patches submitted) 

Efficiency 
 
DIVIDED BY 
 
Activeness 

Table 1 (continued) – Endogenous Constructs: Composition and Measurement 



46 
 

Average Time of 
Task Completion 

(date_close – date_open) :::: For each bug, 
features, support, and patches. 
 
DIVIDED BY 
 
Total number of completed tasks (artifacts). 

SELECT 
artifact.group_artifact_id, 
artifact_group_list.group_i
d, artifact.close_date - 
artifact.open_date, 
artifact.status_id 
 FROM sf0108.artifact, 
sf0108.artifact_group_list 
WHERE 
artifact_group_list.group_a
rtifact_id=artifact.group_art
ifact_id and 
artifact.status_id=2 and 
close_date - 
artifact.open_date > 0 
 
<<Each line represents a 
completed task with its 
respective time to be 
completed>> 
 
THEN 
<<Group dataset by 
project counting the 
number of tasks-artifacts 
and their respective time 
of completion>> 
 
THEN 
<<Divide the total time of 
completion by the number 
of tasks>> 

 

Exogenous Variables 

 

Project Characteristics 

 

For each project characteristic (i.e., license type, intended audience, type 

of project, and development status), Sourceforge.net has assigned one 

independent category codes. For example, each development status has a 

different assigned code (e.g., production/stable is coded 11). Every project has a 

code as well. For instance, a project for the development of the software 

Table 1 (continued) – Endogenous Constructs: Composition and Measurement 



47 
 

Sourceforge.net (web site) is coded 1. Then, Sourceforge.net keeps a table 

called trove_group_link in its database that works as a link between projects and 

their categories. In looking at that table, one is able to find one record that 

contains both 1 for project identification code and 11 for production/stable 

development status, indicating that the project is under the production/stable 

development status. The database works similarly for the intended audience, 

type of project, and license type. Accordingly, to capture these effects, we will 

create one variable for each category of interest and populate it with a “1” value 

whenever the project has such characteristic represented by the variable; 

otherwise with a “0”. Each of these project characteristics are discussed next. 

 

License Type 

 

For license type, Sourceforge.net allows projects to be of different kinds. 

We were able to identify 12 of them (see Table 2). Therefore, for license type, we 

will create 12 variables in our dataset where a project that is registered under 

GPL only, for instance, would score 1 in the variable GPL and 0 in all other 

eleven. Details on collection of this information are in Table 4. 

 

 

 

 

 

 



48 
 

Table 2 – License Types and Codes in the Database 

License Type Code 

Open source initiative (osi) 14 

General public license 15 

Gnu library or "lesser" general public license (lgpl) 16 

Artistic license 17 

Mozilla public license (mpl) 304 

Mozilla public license 1.1 (mpl11) 305 

Apple public source license (apsl) 306 

Berkeley software distribution (bsd) 187 

MIT 188 

Python software foundation license (psfl) 189 

Q public license (qpl) 190 

Ricoh source code public license (rscpl) 193 

 

Intended Audience 

 

For intended audience, we will have to create four variables, one for each 

possible audience the project intends to attract for use or development (end-user, 

system administrator, software developer, and other). These categories are 

coded 2, 4, 3, and 5, respectively in the trove_group_link table. Further details 

can be found in Table 4. 

 

Type of Project 

 

The immense variety of types of projects allowed by Sourceforge.net 

hinders statistical analysis (approximately 162 categories). Fortunately, 

Sourceforge.net provides these project‟s topics hierarchically. As Crowston and 

Scozzi‟s (2002)  explained, the category “Web browsers” is under “Internet” and 

so forth. Accordingly, based on Crowston and Scozzi‟s (2002) approach to deal 

with this issue, we will focus our analysis on the 19 first-level categories. 

http://www.opensource.org/licenses/lgpl-2.1.php
http://www.opensource.org/licenses/artistic-license-1.0.php
http://en.wikipedia.org/wiki/Q_Public_License


49 
 

Therefore, 19 variables are necessary to capture this information. These 

categories, the quantity of projects within them, and their respective codes are 

listed in Table 3 in alphabetical order. Further details on measurement and 

collection can be found in Table 4. 

 

Table 3 – First-Level Types of Projects24 

Category Description Number of 
Projects 

Assigned Code 

Communications  24,381 20 

Database  9,262 66 

Desktop Environment  5,011 55 

Education   7,240 71 

Formats and Protocols   4,771 611 

Games/Entertainment   24,051 80 

Internet   36,740 87 

Multimedia   21,048 99 

Office/Business   14,496 129 

Other/Nonlisted Topic   4,136 234 

Printing   664 154 

Religion and Philosophy   480 132 

Scientific/Engineering   21,417 97 

Security   4,367 43 

Sociology   546 282 

Software Development  39,920 45 

System  29,802 136 

Terminals   867 156 

Text Editors 4,227 63 
TOTAL 253,426

25
 N/A 

 

Development Status 

 

Our approach to deal with development status is similar to license type‟s, 

intended audience‟s, and type of project‟s ones. Development status is also a 

name given for a group of categories with codes from 7 to 12. Respectively, 

                                            

24
 Information collected from the Website Sourceforge.net on 02/25/08. 

25
 This number is higher than the total number of projects (roughly 160,000) because projects 

assign themselves to more than one of these categories often. 

http://sourceforge.net/softwaremap/trove_list.php?form_cat=20
http://sourceforge.net/softwaremap/trove_list.php?form_cat=66
http://sourceforge.net/softwaremap/trove_list.php?form_cat=55
http://sourceforge.net/softwaremap/trove_list.php?form_cat=71
http://sourceforge.net/softwaremap/trove_list.php?form_cat=611
http://sourceforge.net/softwaremap/trove_list.php?form_cat=80
http://sourceforge.net/softwaremap/trove_list.php?form_cat=87
http://sourceforge.net/softwaremap/trove_list.php?form_cat=99
http://sourceforge.net/softwaremap/trove_list.php?form_cat=129
http://sourceforge.net/softwaremap/trove_list.php?form_cat=234
http://sourceforge.net/softwaremap/trove_list.php?form_cat=154
http://sourceforge.net/softwaremap/trove_list.php?form_cat=132
http://sourceforge.net/softwaremap/trove_list.php?form_cat=97
http://sourceforge.net/softwaremap/trove_list.php?form_cat=43
http://sourceforge.net/softwaremap/trove_list.php?form_cat=282
http://sourceforge.net/softwaremap/trove_list.php?form_cat=45
http://sourceforge.net/softwaremap/trove_list.php?form_cat=136
http://sourceforge.net/softwaremap/trove_list.php?form_cat=156
http://sourceforge.net/softwaremap/trove_list.php?form_cat=63


50 
 

these codes refer to Planning, Pre-alpha, Alpha, Beta, Production/Stable, and 

Mature. Accordingly, six variables will have to be created to give us capability to 

separate them in groups pertaining to one or more of these statuses. Further 

details are given in Table 4. 

 

Task Complexity 

 

Sourceforge.net stores information related to every task a project decides 

to manage through its provided tools. By exploring the database, its tables and 

their relationships, we discovered that projects create “projects”, which are 

composed of tasks, which in turn depend on other tasks to be successfully 

completed. Examples of “projects” created by these communities are “Baytek 

Module”, “X10 Module”, “Match and cube evaluations”, “optimize”, and “To Do 

List”26. Again, these “projects” are composed of tasks and each one of their tasks 

depends on a certain number of other tasks, indicating their degree of 

complexity. 

Given that a contributor‟s contribution would occur ultimately in a task(s), 

and only indirectly to the project, it is the degree of interdependence of a project 

(software) tasks that we should be after to represent its complexity to the 

contributors (members) in general. In the project_group_list table one finds 

information to which project a specific “project” belongs. Furthermore, there is a 

table in the database called project_task that contains information on tasks such 

                                            

26
 Information extracted from the table sf0108.project_group_list of the database by the authors. 



51 
 

as to which “project” this task belongs, what its completed percent is, and so on. 

Additionally, there is another table called project_dependencies that contains 

information on which other task(s) a specific one depends on. 

With these three pieces of information, we are able to count how many 

tasks a project has and on how many other task(s) each one is dependent, 

making it possible to derive an overall measure of any project‟s complexity. To 

calculate this derived overall index of complexity for each project, we will first 

take each project (software) task and count the number of other task(s) it 

depends on (i.e., one task dependency index). Then, we will sum up all task 

dependency indexes of a project and divide it by the number of tasks a project 

has, resulting in an overall project‟s task complexity measure. By doing this, we 

expect to create a standardized measure of each project task complexity in 

general. Details on calculations and data collection are in Table 4. 

One specific limitation of this approach is noteworthy. Sourceforge.net 

does not provide documentation for the database besides its E-R diagram (see 

Appendix A) to researchers or to the University of Notre Dame. Nevertheless, we 

could infer by analyzing the E-R diagram that what Sourceforge.net calls tasks is 

not the same thing as artifacts (e.g., bug reports or feature requests), which we 

used to build our activeness and efficiency indexes. Therefore, the degree of 

dependency developed here is related only indirectly to project‟s artifacts, as we 

found out through email conversations with the IT staff at the University of Notre 

Dame. These dependencies are related to tasks that may contain one or many 

bug reports or feature requests (i.e., artifacts), for example. Nonetheless, this 



52 
 

derived complexity measure is related to the project‟s (software‟s) source code, 

which is where developers work. Additionally, we are not interested in a measure 

of complexity for each artifact, but to the whole project. Therefore, we argue that 

our task complexity measure can be used as a proxy to a project‟s tasks 

complexity in general. 

 As project complexity appears in the model as a moderator, to facilitate 

the statistical analysis, we will classify our sample projects into categories to 

represent their complexity, based on its overall project complexity index. 

Accordingly, we will group projects as “very simple” when their overall task 

complexity scores are 0 or 1, as “simple” when scores are 2 or 3, as “complex” 

when 3 or 4, and as “very complex” when 5 or more.  

 Although we found prior studies dealing with task complexity, we had to 

create our own grouping method due to the lack of previous literature aiming at 

defining what correspondence should be used between the number of other 

tasks a task is dependent on, and its level of difficulty in the case of software 

development, as judged by developers. Jiang and Benbasat (2007), for example, 

dealt with task complexity in the context of proper understanding of products by 

online customers. Nevertheless, we do not believe Jiang and Benbasat‟s (2007) 

measure could be directly applied to our study of software development activities, 

given that it aims at end-users. They dealt with people‟s memorization 

capabilities. Therefore, we had to develop our own grouping procedure. 

 

 



53 
 

Control Variable (Project Life-span) 

 

As an attempt to rule out other concurrent explanations for our 

endogenous constructs, based on previous studies, we will control for age of 

project. According to Fershtman and Gandal (2007) and Crowston and Scozzi 

(2002), one should expect age (lifespan) of the project to be an influencer of 

projects‟ activities due to maturity. 

To control for age of project, we will collect information on when the 

project was registered on Sourceforge.net, subtract this date value from the 

current date, and utilize the project age in days as a continuous variable for 

analysis matter (see Table 4 for details). 

 

Table 4 – Exogenous Constructs: Composition and Measurement 

Construct Empirical Measures Database Table.Field How to Get the Data 
(SQL Queries and other 

transformations) 

Project 
Characteristics 

License Type Trove_group_link.trove
_cat_id=14(osi)                      
Trove_group_link.trove
_cat_id=15(gpl)      
Trove_group_link.trove
_cat_id=16(lgpl) 
Trove_group_link.trove
_cat_id=17(artistic) 
Trove_group_link.trove
_cat_id=304(mpl)                      
Trove_group_link.trove
_cat_id=305(mpl11)      
Trove_group_link.trove
_cat_id=306(apsl) 
Trove_group_link.trove
_cat_id=187(bsd) 
Trove_group_link.trove
_cat_id=188(mit)                      
Trove_group_link.trove
_cat_id=189(psfl)      
Trove_group_link.trove
_cat_id=190(qpl) 
Trove_group_link.trove

SELECT trove_cat_id, 
root_parent, group_id 
FROM 
sf0108.trove_group_link 
<<All projects and all their 
categories>> 

 
<<Filter for a specific 
category and create a 
different dataset>> 

 
<<Eliminate duplicates>> 

 
<<From the just created 
dataset, import all 
variables from the main 
dataset>> 

 
<<The new dataset then 
becomes the main 
dataset>> 

 
<<Recode the new 



54 
 

_cat_id=193(rscpl) variable with 0s or 1s>> 

Intended Audience Trove_group_link.trove
_cat_id=2(endusers)                      
Trove_group_link.trove
_cat_id=3(developers)      
Trove_group_link.trove
_cat_id=4(sysadmins) 
Trove_group_link.trove
_cat_id=5(other) 

Type of Project 19 different codes (see 
Type of Project 
section). 

Development Status Trove_group_link.trove
_cat_id=7(planning)                      
Trove_group_link.trove
_cat_id=8(prealpha)      
Trove_group_link.trove
_cat_id=9(alpha) 
Trove_group_link.trove
_cat_id=10(beta)        
Trove_group_link.trove
_cat_id=11(production/
stable)        
Trove_group_link.trove
_cat_id=12(mature)                 

 

Table 4 (continued) – Exogenous Constructs: Composition and Measurement 

 



55 
 

Task 
Complexity 

Summation of the 
Degree of 
Dependency of each 
Task 
 
DIVIDED BY 
 
Number of Tasks 

(number of tasks a 
task depend on) ::: per 
task 

 
 

DIVIDED BY 
 

Count(Project_task.proj
ect_task_id) 

SELECT 
project_group_list.group_i
d, 
project_dependencies.proj
ect_task_id FROM 
sf0108.project_task, 
sf0108.project_dependenc
ies, 
sf0108.project_group_list 
WHERE 
sf0108.project_task.group
_project_id=sf0108.project
_group_list.group_project_
id and 
sf0108.project_task.project
_task_id=sf0108.project_d
ependencies.project_task_
id 

 
<<Each line represents 
one specific task 
dependency on another. 
Therefore, we will have 
repeated lines for one task 
that depends on more than 
one other>> 

 
THEN 
<<Aggregate per task 
(counting the number of 
dependencies or lines per 
task) and saving the 
group_id>> 
 
THEN 
<<Aggregate by group_id 
with a SUM of the tasks‟ 
degree of dependency and 
counting the number of 
tasks, “unweighted 
number of cases” of 
task_id>>  
 
THEN 
 
<<Divide the SUM by the 
number of tasks.  
This would represent an 
overall  standardized 
measure of projects‟ 
complexity>> 

 

 

 

Table 4 (continued) – Exogenous Constructs: Composition and Measurement 

 



56 
 

Control 
Variable 

Life Span (age) Groups.register_time SELECT group_id, 
register_time FROM 
sf0108.groups 

 
THEN  
<<Subtract today‟s date 
from the register_time>> 

 

 

Statistical Analysis and Empirical Evaluation of the Propositions 

 

The number of proposed relationships between our model‟s constructs led 

us to Structural Equation Modeling (SEM) as to avoid an enormity of individual 

regression equations to accomplish a similar empirical exam. 

Our model has five categorical variables (license type, intended audience, 

type of project, development status, and task complexity), and it has six 

continuous or metric constructs (attractiveness, activeness, efficiency, time of 

task completion, likelihood of task completion, and project life-span). Moreover, 

we have categorical exogenous variables, metric endogenous variables, and one 

categorical moderator; everything over three distinct time periods, a situation 

somewhat complex (see Figure 3 for the complete measurement model). 

Nevertheless, according to Hair et al. (2006), SEM is capable of dealing with 

these conditions using multisample SEM analysis. 

According to Chin (1998), SEM is a flexible statistical technique able to 

model relationships among unobservable constructs (latent variables) such as 

attractiveness, accounting for model errors in measurements for observed 

variables. SEM is capable of testing all relationships at once. SEM is the best 

option when a researcher requires assessment of a series of equations 

Table 4 (continued) – Exogenous Constructs: Composition and Measurement 

 



57 
 

simultaneously  (Hair et al., 2006). Therefore, in the case of this research, SEM 

is a more efficient technique that allows the researcher to specify and test 

complex paths rigorously using more than one sample at once (Kelloway, 1998). 

According to Hair et al. (2006), the “multigroup SEM” runs the analysis 

treating different samples as “groups”, providing one chi-square value so that 

discrepancies in model fit between single-group (one sample) and multigroup (3 

samples) options can be assessed. If the difference in chi-square values (model 

fit) between two options is significant, then “group” membership influence is 

determined, otherwise, it is not (Hair et al., 2006). For instance, a model setting a 

particular relationship (attractiveness and activeness) to be equal across all three 

time periods can be tested against a model allowing the relationship to be 

estimated separately in the different time periods. In case significant differences 

between chi-square values are found, the model would be considered 

inconsistent over time. 

A similar approach will be used to test the moderation effect of task 

complexity. Projects will be grouped based on their complexity and two models 

will be estimated. One that has the paths between constructs set to be equal 

across groups, and another that has the paths freely estimated for each group. If 

the one that estimates the paths freely across groups performs better, evidence 

for moderation would be found. 

 

 



58 
 

Figure 3 – Measurement Model
27

 

 

 

Sample Size and Statistical Package 

 
Due to the complexity of the analysis required to test the proposed model, 

Hair et al. (2006, p.873) suggests that sample sizes have to increase to more 

than 500 observations, otherwise “problems with model convergence and 

distortion of the standard errors” are likely to appear. Fortunately, that will not be 

a problem in the case of this research, where we anticipate about 10,000 usable 

observations after the data is cleaned (details in the first section of Chapter 4 – 

Examining the Data). 

                                            

27
 Propositions 5.2-5.5, 6.2-6.5, 7.2-7.5, and 8.2-8.5 are not represented in the figure because 

their intent is merely to show how variables are linked with constructs, and that has already been 
made for propositions 5.1, 6.1, 7.1, and 8.1, which deal with their same constructs. 

 

P4   P12 

P3  P11 

P2   P10 

P1   P9 

P5.1 

Attractiveness 

Task Complexity 

Likelihood of 

Task Completion 

Time of Task 

Completion 

 

Efficiency 

Activeness Project 

Characteristics 

P8.1 

P6.1 

License Type 

Type of Project 

Development Status 

P7.1 

Intended Audience 

Complexity Index 

Hits Downloads Members 

Open Artifacts 
(four trackers: 

bugs, features, 

etc.) 

Closed Artifacts 

(four trackers: 

bugs, features, 

etc.) 

 

Average Time 
to Close 

Artifacts 

Overall Ratio of 

Open Artifacts 

over Closed 

Artifacts 



59 
 

 After cleaning the data, EQS 6.1 for Windows will be used to perform the 

statistical analysis due to its user-friendliness and robustness. EQS is capable of 

dealing with different types of input: raw data, correlation or covariance matrices. 

We decided to input raw data, given that this is the only option that allows 

statistical corrections to be performed on non-normal data for bias reduction 

(Bentler, 1989). 

 SEM does have its assumptions, requiring an evaluation of multivariate 

normality to be performed. Fortunately, its assessment can be readily made 

using EQS, Lisrel, or PLS, allowing the researcher to make an informed decision 

on the estimation method (fitting criteria) to be adopted (i.e., Maximum Likelihood 

or General Least Squares). Priority should be given to a more robust method 

(i.e., ML) when the assumption of multivariate normality is violated (Hoyle, 1995). 

EQS 6.1 provides these statistical correction features straightforwardly. To 

assess multivariate normality, EQS provides Mardia‟s (1970) index, which 

provides a z-statistic. When high values of z-statistics are found (i.e., greater 

than 1.96), data is considered not normally distributed (Byrne, 1994). 

 

Model-To-Data Fit Method and Evaluation 

 

The most common fitting criterion (coefficient estimation criterion) adopted 

is maximum likelihood (Anderson & Gerbing, 1998; Hair et al., 2006). Maximum 

likelihood (ML) is considered efficient with large samples and is capable of 

dealing with non-normal data (Bentler, 1989; Kline, 1998). Accordingly, we 



60 
 

anticipate using maximum likelihood in this study as we expect to deal with non-

normal data. 

Having decided the fitting criterion to be used, the statistical analysis can 

be run for an overall model fit evaluation. Several goodness-of-fit measures are 

available to the researcher for such evaluation. These measures can be 

classified in three different groups: absolute, incremental and parsimonious 

(Joreskog & Sorbom, 1993; Kelloway, 1998). 

Absolute fit measures allow assessment of how well the proposed model 

reproduces the actual data or covariance matrix (Kelloway, 1998). Examples of 

such type of measures are the likelihood-ratio chi-square test (χ2), the root mean 

squared residual (RMR), the root mean squared error of approximation 

(RMSEA), and the goodness-of-fit index (GFI) (Kelloway, 1998). 

The chi-square test result provides a measure of the discrepancy between 

the sample and the fitted correlation or covariance matrices. When one finds a 

non-significant χ2, no discrepancy is found and therefore good fit exists. RMR 

also provides a discrepancy measure (square root of the mean of the squared 

discrepancies) between the implied and the observed correlation or covariance 

matrices, assessing how well a model fits the actual data. RMR values of less 

than 0.05 are suggestive of good model fit (Kelloway, 1998). Likewise, RMSEA 

values, based on an analysis of residuals, below 0.10 or 0.05 are suggestive of 

good and very good model fit, respectively (Steiger, 1990). Finally, providing a 

comparison of the squared residuals from the predicted and the actual data, GFI 

values range from 0 (poor fit) to 1 (perfect fit). As GFI value increases, so does a 



61 
 

model goodness-of-fit (Hair et al., 2006). In our results section (Chapter 4), we 

will present and compare all these measures for our models. 

Incremental fit measures are of interest to us due to our multisample SEM 

analysis strategy adopted to evaluate model consistency between project groups 

and over time. These measures provide comparative goodness-of-fit information 

between competing models (Hair et al., 2006; Kelloway, 1998). Examples of such 

measures are the adjusted goodness-of-fit index (AGFI), Tucker-Lewis index, the 

normed fit index (NFI), the relative fit index (RFI), the incremental fit index (IFI), 

and the comparative fit index (CFI). AGFI is an adjusted by the degrees of 

freedom measure of the GFI. Moreover, Tucker-Lewis, or nonnormed fit index 

(NNFI), provides a comparative index, as NFI, RFI, IFI, and CFI values do, 

ranging from 0 (no fit at all) to 1.0 (perfect fit) (Hair et al., 2006). 

Parsimonious fit measures were created for comparisons between varying 

numbers of estimated coefficients, rather than overall model fit. Examples of 

such measures are the normed chi-square, the parsimonious normed fit index 

(PNFI), and the parsimonious goodness-of-fit index (PGFI). PNFI and PGFI 

account for degrees of freedom in their calculations and their results range from 

0 (no fit at all) to 1 (perfect fit). 

Additionally to the measures discussed above, EQS 6.1 provides 

corrected goodness-of-fit statistics when non-normal data is utilized. These 

measures are called robust statistics. When a researcher runs a robust analysis, 

EQS provides a robust chi-square (2) called the Satorra-Bentler scaled statistic 

(S-B2) and robust standard errors (Byrne, 1994). Moreover, EQS would still 



62 
 

provide all regular indices such as Bentler-Bonett Normed Fit Index (NFI), 

Bentler-Bonett Nonnormed Fit Index, Comparative Fit Index (CFI), and Root 

Mean Square Error of Approximation (RMSEA), however adjusted for the non-

normal data. We will decide on whether to utilize the robust option after we 

evaluate normality of the data. 

 

Evaluation of Construct Reliability and Propositions 

 

To analyze the measurement model results, an approach described by 

Hair et al (2006) will be adopted. This approach consists of evaluating indicators 

loadings on their proposed factor (construct), when more than one indicator for a 

construct exists. To accomplish such a test, construct reliability analysis through 

Cronbach‟s alpha can be made. Measures are said to be reliable as their 

indicators show high internal consistency (Hair et al., 2006). Usually, Cronbach‟s 

alpha values greater than 0.70 are considered acceptable (Hair et al., 2006). In 

the case of our model, we will assess only one of our constructs (attractiveness) 

reliability, given that it is the only one that has more than one indicator (see 

Figure 3). All other constructs have one indicator, forcing us to assume 

acceptable reliability based merely on the logic of the design of the study. 

To test each proposition, the structural model fit will be evaluated. This 

evaluation will occur based on each proposed relationship‟s (path‟s) coefficient 

value and statistical significance (p-values smaller than 0.05). Each path 

coefficient will be discussed in the context of our developed propositions, 



63 
 

presenting support, or lack of, for each one of them. This approach, we believe, 

will give us grounds to develop a general theory about OS project dynamics, 

providing an empirical test of our model that will guide us towards the revision of 

our propositions to increase their generalizability (Chapter 5). 

Of course, SEM is not free of limitations. As its main one, SEM by itself is 

not capable of guaranteeing causal relationships as suggested in a model. As 

with any statistical tool, SEM results may support correlations, or associations, 

between constructs at best. Only theory and logic can accomplish such task of 

avoiding omitted variables, or mistaking cause for effect, to claim a causal 

relationship. 

 

Expected Contributions 

 

First, open source software was adopted by organizations and proved to 

be a viable alternative for them. As these software applications became well 

known in the marketplace, their communities also did, becoming a source of new 

ideas and possibilities to organizations in their developing software endeavors. 

Although attempts to interact with the open source community by 

corporations and to study them by academics have already been made, proper 

understanding of the dynamics of these relationships and their impacts on both 

sides involved are yet to be reached. This research is a step in that direction. We 

focus on software of many kinds released open to the public so to evolve with the 



64 
 

help of others, especially volunteers; just like Linus Torvalds once did with what 

is known today as the operational system Linux. 

Additionally, we believe that this research is capable of shedding light onto 

a theoretical dilemma, where one stream claims that quantity increases diversity, 

and that diversity is a good thing for problem-solving (“the more eye balls, the 

better”); and another, that points out recent empirical evidence suggesting that 

the relationship between the size of a community (number of members) and its 

ability to “evolve” a piece of software is not a significant one. 

Furthermore, this research is fully funded by a consortium that brought 

together two governmental agencies; one Brazilian (CAPES28) and one American 

(Fulbright29). As modern organizations, a rationalist one could state that they 

(should) act towards the accomplishment of their own goals, whatever those are. 

Accordingly, we look at this research as an effort towards that direction, which 

could benefit them, our sponsors, and, consequently, other organizations with 

goals similar to theirs, thereby appreciating insights on “going-open” strategies 

and open source software communities dynamics to use in their own future 

endeavors. 

 

 

                                            

28
 www.capes.gov.br  

29
 www.fulbright.org  

http://www.capes.gov.br/
http://www.fulbright.org/


65 
 

CHAPTER 4 – DATA DESCRIPTION AND STATISTICAL RESULTS 
 

 

 For clarity and ease of following, we are going to present the statistical 

analyses in two blocks. In the first, we developed two SEM models using 

continuous and categorical (dummy) variables, testing propositions 1 to 8.5 on 

three different samples (2006, 2007 and 2008). In the second block, two other 

SEM models were developed, utilizing only continuous variables and testing 

propositions 9 to 12 in a variety of subsamples for two reasons: (a) to evaluate 

the model robustness over time across samples; and (b) to test the plausibility of 

the moderator task complexity to act as suggested. Chapter 4 is dedicated to the 

presentation of the steps taken in this theory-testing process as well as the 

statistical results obtained. 

 Next, we discuss the form all variables used in this study took, plus their 

descriptive statistics. That section is followed by a description of how the first two 

models were assembled and the results they generated, providing statistical tests 

for 24 propositions over three different samples. The third section describes the 

approach used for testing the moderation effects predicted in 4 propositions and 

presents the statistical results acquired. 

 

Continuous Variables‟ Composition 

 

Our data were similar to Crowston & Scozzi‟s (2002), requiring all 

continuous variables to be transformed due to high-levels of Kurtosis and 

Skewness (see Table 7 for descriptive statistics). These continuous variables are 



66 
 

attractiveness (page_views, downloads, members), activeness, efficiency, 

likelihood of task completion, time for task completion and project life-span. All of 

them but likelihood of task completion were log-transformed30. Likelihood of task 

completion was transformed into its inverse-sine-square-root31, which makes 

more normal distributions from variables in a form of proportion32, as in the result 

of efficiency divided by activeness33 (Crowston & Scozzi, 2002). 

The effects of these transformations on Skewness and Kurtosis‟ levels can 

be seen in Table 7. But for illustration, the variable downloads (logdownloads) 

had Skewness of 45.499 (0.234), 46.217 (0.264) and 42.052 (0.348), and 

Kurtosis of 2265.368 (0.359), 2565.711 (0.403) and 2226.074 (0.473) in 2006, 

2007 and 2008, respectively. As Skewness‟ values move away from the range of 

-1 and +1, indication of deviation from the normal distribution increases. For 

Kurtosis, as its values depart from zero, the less normal a distribution is said to 

be (Hair et al., 2006). Based on that, we can see that downloads became a 

normally distributed variable as it was log-transformed, a pattern observed in all 

other variables. 

 

 

 

 

                                            

30
 Natural log (Ln). 

31
 

32
 For guidelines on data transformation, go to: 

http://www.zoology.ubc.ca/~whitlock/bio300/LectureNotes/Transformations/Transformations.html 
33

  For emphasis: likelihood of task completion is the result of efficiency divided by activeness. 
More specifically, it is the number of artifacts a project was able to solve (e.g., fixing a bug) 
divided by the total number of artifacts a project generated. 



67 
 

Categorical Variables‟ Composition 

 

As for the categorical variables such as type of project (topic), we found 

during data collection that a project could be associated with many different 

topics, licenses, audiences and development statuses at the same time. For 

example, the database had projects listed with as many as seven development 

statuses at once, all the way from planning to inactive. A similar pattern was 

observed with all other categories used in our propositions. Aside from the 

discussion of whether this makes logical sense from any perspective, we had to 

find a way to capture these effects statistically. 

To do so, we transformed each categorical construct34 (e.g., license type) 

into a set of dummy variables in a way that a project could score 1 in as many 

dummy variables as listed-characteristics it had. In the next section, we present 

how we developed dummy variables for each categorical construct and explain 

how one dummy variable captures the effect of its categorical construct (see 

Table 5 for information on this representation). 

 

 

 

 

 

 

 

 

 

 

                                            

34
 A categorical construct is empirically studied through the use of many variables, each 

representing the construct partially. Sometimes constructs of this type are said to be measured 
formatively as opposed to reflectively, when measures are consequences of the theoretical 
constructs they represent (Coltman, Devinney, Midgley, & Venaik, 2008). 



68 
 

Table 5 – Categorical Constructs and their Dummy Variables 

Categorical Construct Formative Dummy Variables 

License Type No_restriction 
Mod_restriction 
Both_restrictions 

Dual_License 

Intended Audience End_users 
Developers 

System_administrators 
Others_audience 
Advanced_end_users 

Project Type (topic) Communications 
Database 
Desktop  

Education  
Games 
Internet 

Multimedia 
Office 
Other 

Printing 
Religion 
Scientific 

Security 
Sociology 
Software 

System 
Terminals 
Text_editor 

Project Development Status Planning 
Pre_alpha 
Alpha 

Beta 
Production 
Mature 

Inactive 

 

Categorical Construct: License Type 

 

Due to the immense number of licenses in use by OS projects, any 

empirical test is virtually forced to group them into more general categories to be 

operational. We captured the effects of license type using 4 dummy variables we 

created in a process described in Appendix B. (Table 6 has information on 

frequencies and licenses‟ classification). 

 

 

 

 

 



69 
 

Table 6 – Classification of Licenses. 

License Name Restrictive H-Restrictive Parent Code Dummy Coding

2006 2007 2008

GNU General Public License (GPL)        Y Y 14 15 3059 3270 3565 Both_Restrictions

Sub-Total 3059 3270 3565

Apple Public Source License             Y N 14 306 2 6 8 Mod_Restriction

Common Public License                   Y N 14 307 63 88 103 Mod_Restriction

Eiffel Forum License                    Y N 14 319 2 3 5 Mod_Restriction

GNU Library or Lesser General Public    Y N 14 16 747 845 938 Mod_Restriction

IBM Public License                      Y N 14 191 7 11 11 Mod_Restriction

Jabber Open Source License              Y N 14 300 1 3 4 Mod_Restriction

Motosoto License                        Y N 14 321 0 0 0 Mod_Restriction

Mozilla Public License 1.0 (MPL)        Y N 14 304 32 31 33 Mod_Restriction

Mozilla Public License 1.1 (MPL 1.1)    Y N 14 305 84 91 105 Mod_Restriction

Nethack General Public License          Y N 14 303 5 6 5 Mod_Restriction

Nokia Open Source License               Y N 14 301 2 2 3 Mod_Restriction

Qt Public License (QPL)                 Y N 14 190 18 18 19 Mod_Restriction

Ricoh Source Code Public License        Y N 14 193 2 2 2 Mod_Restriction

Sleepycat License                       Y N 14 302 2 3 3 Mod_Restriction

Sun Public License                      Y N 14 318 6 13 17 Mod_Restriction

Sub-Total 973 1122 1256

Apache Software License                 N N 14 296 105 116 125 No_restriction

Artistic License                        N N 14 17 102 112 116 No_restriction

BSD License                             N N 14 187 451 532 604 No_restriction

Intel Open Source License               N N 14 299 3 6 9 No_restriction

MIT License                             N N 14 188 128 155 196 No_restriction

Open Group Test Suite License           N N 14 316 1 2 2 No_restriction

Public Domain                           N N 13 197 124 228 300 No_restriction

Python License (CNRI Python License)    N N 14 194 18 19 19 No_restriction

Python Software Foundation License      N N 14 189 12 16 20 No_restriction

Sun Industry Standards Source Licens    N N 14 298 5 5 5 No_restriction

University of Illinois/NCSA Open Sou    N N 14 323 6 7 6 No_restriction

Vovida Software License 1.0             N N 14 297 1 0 0 No_restriction

W3C License                             N N 14 320 2 5 6 No_restriction

X.Net License                           N N 14 317 1 1 1 No_restriction

zlib/libpng License                     N N 14 195 21 28 33 No_restriction

Zope Public License                     N N 14 322 1 1 3 No_restriction

Sub-Total 981 1233 1445

Sample Frequency

 
 
 
 
 
 
 
 

 



70 
 

Table 6 (continued) – Classification of Licenses. 

License Name Restrictive H-Restrictive Parent Code Dummy Coding

2006 2007 2008

Sample Frequency

Academic Free License (AFL)             14 324 18 89 120 N/A

Adaptive Public License                 14 628 4 16 17 N/A

Apache License V2.0                     14 401 40 86 143 N/A

Attribution Assurance License           14 325 2 2 1 N/A

Common Development and Distribution     14 630 5 15 26 N/A

Common Public Attribution License 1.0 (CPAL)* 14 639 0 0 2 N/A

Computer Associates Trusted Open Sou    14 631 1 5 7 N/A

CUA Office Public License Version 1.    14 402 0 0 1 N/A

Eclipse Public License                  14 406 10 31 44 N/A

Educational Community License           14 629 2 11 17 N/A

Eiffel Forum License V2.0               14 392 1 2 3 N/A

Entessa Public License                  14 397 0 3 3 N/A

EU DataGrid Software License            14 403 0 1 2 N/A

Fair License                            14 404 0 9 14 N/A

Frameworx Open License                  14 400 0 2 2 N/A

Historical Permission Notice and Dis    14 393 1 2 2 N/A

Lucent Public License (Plan9)           14 398 0 0 1 N/A

Lucent Public License Version 1.02      14 405 0 2 3 N/A

MITRE Collaborative Virtual Workspac** Y Y/N 14 192 0 0 0 N/A

NASA Open Source Agreement              14 407 1 1 2 N/A

OCLC Research Public License 2.0        14 390 1 1 2 N/A

Open Software License                   14 388 21 62 84 N/A

OSI-Approved Open Source                13 14 45 42 42 N/A

Other/Proprietary License               ? ? 13 196 150 170 195 N/A

PHP License                             14 399 16 41 59 N/A

RealNetworks Public Source License V    14 395 0 0 1 N/A

Reciprocal Public License               14 396 1 1 1 N/A

Sybase Open Watcom Public License       14 389 0 0 0 N/A

wxWindows Library Licence               14 391 8 16 18 N/A

Sub-Total 327 610 812  
OBS.: A project may be counted as many times as the number of licenses it has. 

Nevertheless, one may read this table as how many projects have a specific license attached to it. 

* License present only in the 2008 database. 

Restrictive: Y implies that the source code from modifications to the program must be made available. 

Highly Restrictive: Y implies that the program cannot be compiled with proprietary programs. 

** Licensees can choose between the two possible options. 

*** N/A: License not classified in Lerner & Tirole (2005) or with dubious classification. 

Source: Adapted from Lerner & Tirole (2005). 

 
 
 
 
 
 
 
 



71 
 

Categorical Constructs: Intended Audience, Project Type and Development 
Status 

 

The remaining categorical constructs were coded in a consistent form. As 

shown in Table 5, each construct was measured through a number of dummy 

variables, each representing one characteristic a project might possess, scoring 

1, or not possess, and then scoring 0. Intended audience required 5 dummies, 

project type required 1835, and development status 7 (totaling 30 dummy 

variables – plus 4 for license type). In the descriptive statistics section that 

follows, we present their frequencies (see Table 8). 

 

Block 1: Descriptive Statistics and Statistical Results – Propositions 1 to 8.5 

  

Sourceforge.net database contains information on 149,542 OS projects in 

2006, 179,867 in 2007, and 143,591 in 2008. However, many of these projects 

are inactive, have only 1 (one) member, and possess other characteristics that 

distance them from any software project we may find in more interesting settings. 

Therefore, we applied a filter to select a more appropriate sample to run our tests 

on. 

We restricted our working sample to projects that (1) had more than one 

member, (2) had received at least one visit, (3) at least one downloads, (4) at 

                                            

35
 This number was previously said to be 19 (Table 3), but one of the topics available to open 

source projects to choose – formats – had to be excluded from our sample. That was necessary 
because no constant is allowed to enter an SEM-model in EQS and 41 projects had formats listed 
in 2006, but none of them had it in 2007 and 2008. Then, formats, a constant with only zeros in 
2007 and 2008, was completely excluded from the statistical analysis. 



72 
 

least one artifact (e.g., a bug report – activeness), and (5) at least one closed 

artifact (e.g., a bug fix – efficiency). Additionally, we excluded projects with 

untrustworthy information such as (6) negative – or zero – time to complete 

tasks, (7) negative – or zero – registered time, (8) negative likelihood of task 

completion (i.e., efficiency divided by activeness), and (9) negative – or zero – 

average time for task completion. As a result of this filter, we ended up working 

with a sample of 4,769 OS projects in 2006, 4,611 in 2007 and 4,661 in 2008. 

For illustration purposes, the average project in the 2008 sample received 

3,123 website visits, was downloaded 224,252 times, and has 6 members. Also, 

this project generated over 143 artifacts (activeness) and closed (efficiency) 

roughly 109 of them in an average of approximately 130 days. Moreover, the 

average project is 2,109 days old (over 5.5 years). 

Nevertheless, these descriptive statistics have to be interpreted with 

caution for at least two reasons. First, as we have mentioned, the data is highly 

skewed and kurtotic with many variables‟ standard deviations greater than their 

own means. For example, webpage visits has a standard deviation of 32,168, 

downloads has one of 2,836,568, members has 9, activeness has 1,843, 

efficiency 1,781, and average time of task completion of 176 days. Second, it is 

important to bear in mind that we have presented the descriptive statistics of the 

variables in their natural form and not in the form we actually used in the 

structural equation models, which have all continuous variables in their log-

transformed form. But since to discuss the logs of webpage visits or the logs of 

members in a project would not make intuitive sense, we opted to present them 



73 
 

here as we have (see Table 7 for descriptive statistics on the continuous 

variables of all samples in both forms). 

For the categorical constructs, we report the number of projects that 

scored 1 (one) in each dummy variable in Table 8. To clarify, one may think of 

the dummy variable as a group separator. The number of projects that score 1 

(one) in a dummy variable represents the size of the group that the dummy 

variable represents. For example, in our 2008 sample, 1,327 OS projects had 

licenses attached to it that would not impose any restriction on the software use 

or modification; 2,721 projects targeted end-users as an audience; 228 projects 

were listed under the topic database; And 2,009 projects had their software in the 

beta development stage (for a complete list see Table 8).



74 
 

Table 7 – Descriptive Statistics for Model 1 Testing (without moderator). 

2006 2007 2008

4769 4611 4661

2006 2007 2008 2006 2007 2008 2006 2007 2008 2006 2007 2008

5097.486 2858.363 3123.592 89313.100 24500.981 32168.194 54.208 25.340 29.595 3325.833 817.214 1086.181

5.084 4.991 4.967 2.413 2.326 2.322 0.190 0.154 0.160 0.056 0.023 0.077

167612.232 168797.169 224252.312 2921545.550 2301616.385 2836568.737 45.499 46.217 42.052 2265.368 2565.711 2226.074

8.876 9.102 9.324 2.198 2.129 2.108 0.234 0.264 0.348 0.359 0.403 0.473

6.359 6.280 6.375 9.247 9.489 9.680 12.295 14.133 15.017 326.330 409.309 471.574

1.481 1.471 1.480 0.757 0.750 0.758 0.988 1.015 1.014 0.784 0.907 0.846

133.313 133.920 143.223 1635.576 1739.353 1843.776 61.271 60.027 62.685 4031.743 3868.334 4147.710

3.046 3.024 3.117 1.712 1.711 1.713 0.369 0.371 0.360 0.022 0.023 0.023

99.308 105.882 109.350 1535.000 1681.616 1781.454 63.373 61.676 64.351 4229.496 4023.721 4300.308

2.424 2.447 2.477 1.795 1.806 1.824 0.592 0.582 0.577 -0.033 -0.042 -0.087

0.619 0.643 0.612 0.267 0.270 0.268 -0.243 -0.336 -0.237 -0.930 -0.925 -0.949

0.755 0.797 0.742 0.430 0.444 0.426 0.564 0.434 0.563 -0.538 -0.801 -0.494

8605733.143 9947864.963 11237244.165 11352682.288 13214125.768 15221059.687 3.699 3.552 3.422 23.869 20.394 17.665

15.067 15.192 15.283 1.879 1.901 1.928 -2.274 -2.217 -2.171 8.682 8.222 7.934

1399.301 1749.564 2109.233 494.993 498.623 499.876 -0.074 -0.053 -0.055 -0.984 -0.995 -0.993

7.169 7.422 7.624 0.408 0.309 0.251 -0.770 -0.547 -0.447 -0.092 -0.550 -0.707

Variables

logaverage

life_span

log_life

efficiency

logefficiency

likelihood

loglikelihood

average

logdownloads

members

logmembers

activeness

logactiveness

Mean Std. Deviation Skewness

downloads

pageviews

logpageviews

Descriptive Statistics
KurtosisSample Sizes

Statistic Statistic

 



75 
 

Table 8 – Frequency Table – Categorical (dummy) variables. 

Categorical 
Construct 

 2006 2007 2008 

Sample Size 4769 4611 4661 

Variables' Names Frequencies  

License Type 

no_restriction 947 1143 1327 

mod_restriction 942 1077 1197 

both_restrictions 3059 3270 3565 

dual_license 620 609 889 

Intended Audience 

end_users 2445 2548 2721 

Developers 2933 3022 3241 

system_administrators 1133 1202 1274 

others_audience 488 568 633 

advanced_end_users 155 444 616 

Project Type (Topic) 

communications 773 181 220 

Database 392 198 228 

Desktop 235 126 139 

Education 171 148 180 

Games 606 219 254 

Internet 1184 241 274 

Multimedia 714 38 50 

Office 328 137 149 

Other 138 149 171 

Printing 39 43 45 

Religion 21 22 22 

Scientific 567 117 130 

Security 156 126 146 

Sociology 28 15 17 

Software 1158 572 604 

System 923 45 50 

Terminals 40 11 14 

text_editor 215 51 57 

Life-cycle Stage 

Planning 243 638 983 

pre_alpha 318 544 692 

Alpha 818 985 1117 

Beta 1811 1898 2009 

Production 2251 2299 2462 

Mature 208 227 243 

Inactive 76 111 154 

 
 

 

 

 

 



76 
 

Attractiveness‟ Reliability and Model Building 

 

 The SEM model assembled to test propositions 1 to 8.5 contained 42 

variables, organized in 40 factors (or constructs). Attractiveness is the first 

construct, “measured” through webpage visits, downloads, and members. The 

next 5 (five) constructs represent activeness, efficiency, likelihood of task 

completion, time for task completion, and project life-span. Each of these 5 

constructs was measured through one single indicator, as Error! Reference 

ource not found. indicates, and together with attractiveness completes the list of 

continuous variables. The categorical constructs were represented by dummy 

variables, each with a single indicator also. Thus, as the only construct measured 

through more than one indicator (observed variable)36, attractiveness‟ 

measurement reliability should be assessed before proceeding into model 

assembling. 

 

Attractiveness‟ Reliability 

 

To assess attractiveness’ internal consistency across all our samples, we 

calculated Cronbach‟s alpha. Combining the 3 empirical measures proposed 

(pageviews, downloads and members), attractiveness scored 0.705 in 2006, 

                                            

36
  Due to this characteristic of the model, its resemblance to a regression-type of model is no 

coincidence. We actually regressed attractiveness as the average of website visits, downloads 
and members (dependent variable) on the dummy variables (independent variables) and 
observed that the coefficients virtually match between the SEM and multiple regression results. 



77 
 

0.712 in 2007, and 0.714 in 2008, just above the standard acceptable level of 

Cronbach‟s alpha (Hair et al., 2006; Rutner, Hardgrave, & McKnight, 2008). 

These results indicate that the number of pageviews, downloads and 

members are likely to have at least one common cause among them, or are 

empirical expressions of a same latent construct, attractiveness, as we have 

theorized. Also, this conclusion appears to be consistent over time as Cronbach‟s 

alpha scores virtually match in all samples (Table 9). 

 

Model Building 

 

The model developed in this dissertation revolves around attractiveness, 

aiming at the explanation of its causes and consequences. To accomplish a test 

of this model, 5 (five) of the equations coded in EQS are of special interest. The 

first equation takes care of what was hypothesized to impact attractiveness. All 

dummy variables were theorized to influence attractiveness (propositions 5.1, 

6.1, 7.1, and 8.1). Thus, we included all categorical constructs, each measured 

by one dummy variable with error variance set to zero, as predictors of 

attractiveness plus project life-span, which is a control variable. In regression 

terms, we have attractiveness, the dependent variable, measured through three 

indicators (logpageviews, logdownloads and logmembers), being predicted by 34 

dummy variables plus project life-span, forming the independent variables. The 

next 4 (four) equations represent what was hypothesized to influence activeness, 



78 
 

efficiency, likelihood of task completion, and time for task completion 

(propositions 1, 2, 3, and 4; and equations 2, 3, 4, and 5, respectively). 

Similarly to attractiveness, each of these constructs was predicted to be 

influenced by all categorical constructs (propositions 5.2, 5.3, 5.4, 5.5, 6.2, 6.3, 

6.4, 6.5, 7.2, 7.3, 7.4, 7.5, 8.2, 8.3, 8.4, 8.5). Moreover, attractiveness, our main 

construct, and project life-span (a control variable) had their effects on these 

constructs theorized as well and had their effects evaluated (propositions 5.1, 

6.1, 7.1, and 8.1). 

To accomplish these tests, we modeled each dummy variable as one 

categorical construct with error variance set to 0 (zero), plus attractiveness with 

its three indicators, plus the control variable project life-span as predictors of 

activeness, efficiency, likelihood of task completion and time for task completion 

(see Table 10 for details on all equations). 

Additionally, three pieces of information on the SEM model assembled are 

relevant. First, all covariances between the independent factors were estimated. 

Second, as we have discussed previously, the dependent variables activeness, 

efficiency and likelihood of task completion are related to one another for (a) 

efficiency is a subgroup of activeness (i.e., activeness contains efficiency‟s data 

plus the number of non-closed artifacts); and (b) likelihood of task completion is 

the result of efficiency divided by activeness. Thus, to account for those 

conditions, we assumed the disturbance terms (residuals) of the equations 

predicting activeness, efficiency, and likelihood of task completion to be 

correlated and estimated their covariances. According to Cole, Ciesla & Steiger 



79 
 

(2007), failure to account for these disturbance terms‟ covariances, when theory 

(logic) says they should correlate, generates misleading results37. Third, as 

discussed in the methods section (Chapter 3), we adopted the Maximum 

Likelihood (ML) estimation method due to its robustness with large and non-

normal samples (Hair et al., 2006). 

All 2006, 2007 and 2008‟s data were entered into EQS in the form of raw 

data, having their covariance matrices calculated by EQS (Appendix C) in a 

multi-sample fashion. This multi-sample SEM approach with ML is appropriate for 

at least two reasons. First, it permits model fit indices to be calculated taking into 

account all samples at once, increasing our confidence in the model robustness 

over time as it provides re-tests of the model. In a non-multi-sample fashion, one 

would have to run the estimation procedure as many times as samples one had 

for further comparison. Second, the equations coefficients may be calculated 

both (1) independently, sample-by-sample, or (2) forced to be equal across 

samples. Later, these two approaches‟ results can be compared for assessment 

of model robustness or invariance over time, defeating sampling fluctuations that 

may obscure effects (Maitland, Dixon, Hultsch, & Hertzog, 2001). 

When one opts for the second option, taking advantage of more 

information available to develop the equations, one needs to impose constraints 

on the estimation process such that EQS is informed to find “the best” equations‟ 

coefficients (path coefficients) across all samples. Without the constraints, EQS 

                                            

37
 To evaluate the impact of not including these disturbance terms‟ correlations, we omitted them 

and ran the analysis. The results changed unrealistically to equations‟ R-squared greater than 
0.93, with an overall SEM model with poor model-to-data fit (e.g., RMSEA greater than 0.08). 



80 
 

would estimate equations‟ coefficients for each sample separately. Of course, the 

choice of having or not having the constraints affects model fit indices. For that 

reason, we opted to run the estimation procedure twice, with and without the 

path-coefficient equality constraints across samples, for comparability38. 

 

Results – Comparison between Models and Model-to-Data Fit Indices 

 
 As previously explained, we coded and ran two different, but nested39, 

models to compare their results and choose one for further analysis. One model 

does not have any constraint and so estimates all path-coefficients between 

factors (constructs) freely and independently for each of the three samples. The 

other model has each and every path-coefficient between factors constrained to 

be equal across samples. For example, to constrain the path-coefficients 

between attractiveness and activeness across samples, we coded in EQS: 

“(1,F2,F1)=(2,F2,F1)=(3,F2,F1)”, where 1, 2 and 3 stand for each sample (2006, 

2007, and 2008), F1 for attractiveness and F2 for activeness. For emphasis, all 

358 path-coefficients between constructs were set to be equal across samples in 

the constrained model. 

According to Rigdon (1996), to compare nested models, one has to 

compute the chi-square difference between them and compare that value against 

                                            

38
 The actual EQS code is not included in this document because it is 38 pages long. However, it 

is available upon request to the authors. 

39
 Given that the Model with constraints is a special case of the model without the constraints 

(Rigdon, 1996). 



81 
 

a chi-square critical value, which can be obtained from a regular chi-square table 

given a level of significance (α=0.05). The null hypothesis in such test is that 

there is no significant difference in model-fit between the models. Put differently, 

there is no gain in model-fit to give up this set of constraints. Therefore, when 

there is no evidence for null-hypothesis rejection, the model with the constraints 

should be kept, as it has more degrees of freedom and facilitates interpretation in 

our case. This procedure is called LaGrange-Multiplier Test for dropping 

constraints. 

The difference in chi-square between the models is 206 (df=358; p-

value>0.9). Thus, as the null hypothesis is not rejected, the test result indicates 

that the model with the equality constraints produces at least as good fit as the 

non-constrained model. Additionally, the two models have similar model-to-data 

fit indices, matching up to the second decimal place (with the exception of 

RMSEA, which favors the constrained model by 0.01). Therefore, we opt for the 

constrained model for further analysis (see Table 9 for details on this test). 

Fit indices check whether the pattern of variances and covariances are 

consistent between the specified model and the sample data (Dow, Jackson, 

Wong, & Leitch, 2008). A “good” fit is a necessary condition to analyze SEM 

models. Normally, to evaluate fit, researchers report chi-square values, which 

they do not expect to be significant (<0.05), root mean square error 

approximation (RMSEA), which they expect to be smaller than 0.05, and 

comparative fit index (CFI), which they expect to be greater than 0.90, among 

others (Dow et al., 2008; Hair et al., 2006). The constrained model has an 



82 
 

RMSEA of 0.016, a CFI of 0.982 and a significant chi-square of 2736.912 

(df=592; p-value<0.01) – see Table 9. 

The chi-square statistic is known for being sensitive to the sample size 

used and the number of parameters modeled (Cheung, Leung, & Au, 2006; R. 

Ping, 2008). Accordingly, it should be expected to find a significant chi-square 

when a model is compared against a sample size of over 4,500 observations with 

a large number of parameters being estimated. Because of that, researchers are 

less concerned with chi-square results, accepting a model as of “good” fit when 

at least one index suggests so (Cheung et al., 2006; R. Ping, 2008). Among 

them, “RMSEA is relatively most stable among the commonly used fit indices” 

(Yuan, 2005, p. 141); and the preferable one for theory testing (Cheung et al., 

2006; R. Ping, 2008). Therefore, although our model has a significant chi-square, 

we concluded that it has an acceptable fit based on its CFI greater than 0.90 and 

RMSEA smaller than 0.05 (Table 9). In the next section, we move to a discussion 

of each equation, testing propositions 1 to 8.5. 

 

Table 9 – Model-to-Data Fit Indices (without moderator). 

Comparison

Attractiveness Cronbach's Alpha

Chi-Square 206.811 (358 d.f.)

P-Value for Chi-Square Same

Model Fit (CFI) 0.001

B-B Normed Fit Index -0.002

Root Mean Square Residual (RMR) 0.001

RMSEA -0.010

Favor Model with ConstraintsDecision (given 206.811 < 403.121):

Chi-Square Critical Value (0.05; 358 d.f.): 403.121

2530.101 (234 Degrees of Freedom)

< 0.01

0.981

0.979

0.014

0.026

Model with Equality Constraints Model without Equality Constraints
2006 2007 2008

0.705 0.712 0.714

0.977

2006 2007 2008

0.705 0.712 0.714

0.015

0.016

2736.912 (592 Degrees of Freedom)

< 0.01

0.982

 

 



83 
 

Results – Testing Propositions 1 to 8.5 

 The path loadings (equations‟ coefficients) for the constrained SEM model 

are shown in Table 10. Significant paths (p<0.05) are highlighted on their T-

values. First, to present these results, the effects of the control variable – project 

life-span – on attractiveness, activeness, efficiency, likelihood of task completion 

and time for task completion is discussed. Next, the effects of attractiveness on 

activeness, efficiency, likelihood of task completion and time for task completion 

are presented. Finally, a section on the influences of license, intended audience, 

project topic and development status on attractiveness, activeness, efficiency, 

likelihood of task completion and time for task completion appears. Due to the 

large amount of variables‟ relationships tested in this dissertation, we restrict our 

analysis to the discussion of the statistically significant ones. The interested 

reader should refer to Table 10 for additional details. 

 
Project Life-Span (Control variable) 

 

 Although the impact of project life-span was not formally stated in a 

propositional form, its effect on the dependent variables was predicted and 

therefore calculated. As it turned out, project life-span is a statistically significant 

predictor of attractiveness, likelihood of task completion and time for task 

completion. It has a positive impact on these variables so that one would expect 

them to increase as a project grows older. 

 In practical terms, according to the empirical findings, as a project grows 

older: (a) the more website visits, downloads, and members (higher 



84 
 

attractiveness) it is expected to have, (b) the more likely it becomes to solve its 

issues (e.g., fixing bugs), and (c) the longer it is expected to take to solve its 

issues. Therefore, the importance of including project life-span on an analysis of 

software development projects appears justified, as Crowston & Scozzi  (2002) 

have posited. 

 

Attractiveness‟ Impacts (Propositions 1, 2, 3, and 4) 
 

 Attractiveness is a statistically significant predictor of all dependent 

variables under investigation. It positively influences activeness, efficiency, and 

time for task completion (and negatively likelihood of task completion). This 

means that as a project‟s attractiveness increases, its level of content generated 

(i.e., activeness) as well as its number of actually solved issues (i.e., efficiency) 

increase along. Breaking attractiveness down, one may say that as a project 

receives more visits, downloads and has more members, more content 

(“problems” and “solutions”) it generates, just as Raymond (1999) predicted and 

many others attempted to test (Raja & Tretter, 2006; Stewart & Gosain, 2006). 

 However, the impact of attractiveness on likelihood of task completion and 

on time for task completion is not as intuitive as on activeness and efficiency. 

The empirical findings suggest that as a project‟s number of visits, downloads, 

and members increase, its likelihood to complete tasks decreases and its time to 

complete tasks increases. Thus, it appears, as more visits and downloads occur 

and more members join an OS project, the less problem-solving-oriented it 

becomes and the slower it gets to complete its tasks. This pattern unfolds a 



85 
 

potentially negative side of an apparently only-positive project trait 

(attractiveness). 

 Nevertheless, propositions 1 to 4 do not predict the directionality (positive 

or negative) of attractiveness‟ impacts on the dependent variables, but simply 

that it would be a significant predictor of them. Therefore, we fail to reject these 

propositions and find them all tenable (Table 11). 

 

License-Type‟s Impacts (Propositions 5.1 to 5.5) 

 

 Our analysis of project‟s licenses impact introduces the logical pattern we 

are going to use to judge whether a categorical construct, which groups many 

dummy variables together, can be deemed to be a significant influencer of the 

dependent variables. As one categorical construct (e.g., license) has many 

dummy variables (e.g., no_restriction), each representing a unique and 

independent facet of their construct, all we need is to check whether at least one 

of the construct‟s dummies is significant for finding a statistically significant 

categorical construct. Alternatively, when none of a construct‟s dummy variables 

are significant predictors of a dependent variable, the construct they represent 

isn‟t as well. This logic can be easily followed if one imagines an attempt to argue 

that a categorical construct has no impact on a dependent variable when there is 

one dummy variable representing it that does. 

For project’s license, 4 (four) dummies were used and one was found 

significant in predicting all dependent variables but time for task completion. On 



86 
 

predicting attractiveness, dual_licensing was the significant one; mod_restriction 

and both_restrictions were found to be positively (and no_restriction negatively) 

associated with attractiveness, however insignificantly. 

As previously stated, to license a project‟s software under more than one 

license with different constraints, depending on the type of user, is an identified 

trend on software that was once proprietary and had its source code opened later 

on (Santos Jr., 2008; Watson, Boudreau, York, Greiner, & Wynn Jr., 2008). 

According to the empirical results, projects under this type of licensing scheme 

tend to have higher attractiveness to the public. In another words, in our sample, 

to dual-license a project impacts positively its numbers of webpage visits, 

downloads, and members. Nevertheless, it is noteworthy that these dual-licensed 

projects are likely to have members who are employees of the company that 

originally owned their software, providing them an advantage over the others. 

 As for activeness, efficiency and likelihood of task completion, only 

both_restrictions was found to have a statistically significant impact on them. The 

impact of both_restrictions is negative on activeness and efficiency, informing 

that a project tends to produce less content when a modification to the software 

must be made available and the program cannot be compiled with proprietary 

programs (GPL license). Additionally, having a project under a license that has 

both_restrictions influences likelihood of task completion positively. Thus, 

projects under the GPL license are more likely to solve its issues than the others. 

Finally, none of the 4 dummy variables that captured the impact of license 

was found statistically significant on explaining time for task completion. 



87 
 

Therefore, we have support for propositions 5.1, 5.2, 5.3, and 5.4, but not 5.5, 

which is then rejected (Table 11). 

 

Intended Audience Impacts (Propositions 6.1 to 6.5) 

 

 The impacts of a project‟s intended audience on our model‟s dependent 

variables can be summarized as follows. Three of audience‟s dummies are 

statistically significant influencers of attractiveness. Projects that target end-users 

and developers tend to have higher attractiveness, whereas projects aiming at 

others tend to have lower. Moreover, the impact of audience on activeness and 

efficiency is restricted to end-users, pushing their levels down. In its turn, 

likelihood of task completion is positively influenced when projects have software 

aimed at advanced-end-users. Finally, a project‟s average time for task 

completion is significantly affected, negatively, when at least one of a project‟s 

audiences is others; and positively, when the audience developer is of target. In 

conclusion, as at least one of audience‟s dummy variables was significant in 

predicting each one of the five dependent variables, there is no empirical reason 

to reject propositions 6.1 to 6.5 (Table 11). 

 

 

 

 

 



88 
 

Type of Project‟s Impacts (Propositions 7.1 to 7.5) 

 

 According to the empirical results, a few types of projects stand out as far 

as attractiveness is concerned. On the positive side, increasing a project‟s 

attractiveness, we have multimedia, printing, security, and system; whereas on 

the negative side there are database, education, other, scientific, and sociology, 

hindering a project‟s attractiveness. 

 Moreover, project types influence project‟s activeness and efficiency levels 

along similar lines – aside from desktop, which affects negatively activeness but 

not at all efficiency. On the types of project that are common to affect both: 

education, office, and sociology influence activeness and efficiency positively; 

and games, multimedia, and system do so negatively. 

 As far as the likelihood of task completion is concerned, projects focused 

on the communications, sociology, system, and text-editor niches tend to 

complete their tasks less often; whereas those focused on education and internet 

tend to do so more often. 

 Finally, the types of projects that tend to affect a project‟s work-pace, 

increasing the average amount of time to complete tasks spent by them, are 

other, religion, sociology, and terminals. No type of project was found to influence 

average time for task completion negatively and significantly, reducing a project‟s 

average time to complete tasks. 

 Therefore, as types of project were found to be statistically significant on 

predicting all dependent variables – activeness, efficiency, likelihood of task 



89 
 

completion, and time for task completion, we have no ground for the rejection of 

propositions 7.1 to 7.5 (Table 11). 

 

Development Status‟ Impacts (Propositions 8.1 to 8.5) 

   

The development status of a project‟s software was found to significantly 

influence a project‟s attractiveness in all of its seven possibilities. Apparently, the 

initial phases of a project‟s life-cycle (planning, pre-alpha, and alpha) tend to 

affect a project‟s attractiveness negatively, scaring people away from the project. 

Towards the more advanced phases (beta, production, and mature), this pattern 

is reversed as a project‟s attractiveness tend to increase when in such statuses. 

Reversing the influence pattern again, our findings indicate that people usually is 

not attracted towards projects listed as inactive. 

 For a project‟s level of content generated, activeness and efficiency are 

positively influenced by projects‟ classified as beta, production, and mature. Also, 

the inactive status was found to affect a project‟s activeness positively. Moreover, 

when in the stage of planning, a project‟s likelihood of task completion is affected 

negatively; whereas it is influenced positively when in pre-alpha, production, and 

mature. 

 Finally, projects with software listed as in pre-alpha, alpha and inactive 

life-cycle stages tend to work faster towards the completion of their tasks; 

whereas those with applications in production and mature stages tend to be at a 



90 
 

slower work-pace. These results are consistent with all propositions, 8.1 to 8.5, 

leading us to a fail-to-reject decision on all of them (Table 11). 

  As we come to the end of the independent variables‟ influences 

presentation, it is important to discuss how powerful they are, when used 

together to predict or explain the dependent variables under investigation.



91 
 

Table 10 – Equations to test propositions 1 to 8.5. 

Independent Variables

Coef. T-Statistic Coef. T-Statistic Coef. T-Statistic Coef. T-Statistic Coef. T-Statistic

F1-Attractiveness* -- -- 0.617 74.872
A

0.593 67.194
A

-0.035 -15.249
A

0.250 25.246
A

F2-Activeness* -- -- -- -- -- -- -- -- -- --

F3-Efficiency* -- -- -- -- -- -- -- -- -- --

F4-Likelihood of Task Completion* -- -- -- -- -- -- -- -- -- --

F5-Time for Task Completion* -- -- -- -- -- -- -- -- -- --

F6-Life-Span* 1.019 20.495A
0.015 0.402 0.06 1.484 0.031 2.624A

0.735 14.941A

F7-License(No-Restriction) -0.077 -1.235 0.018 0.406 0.046 0.927 0.021 1.42 0.034 0.555

F8-License(Mod-Restriction) 0.048 0.991 -0.042 -1.207 -0.024 -0.615 0.02 1.8 0.003 0.059

F9-License(Both-Restrictions) 0.084 1.605 -0.144 -3.827A -0.097 -2.344A 0.028 2.299A -0.038 -0.755

F10-License(Dual-Licensing) 0.169 2.522A
-0.009 -0.177 -0.05 -0.925 -0.028 -1.78 -0.057 -0.868

F11-Audience(End-Users) 0.549 15.605A -0.052 -2.014A -0.082 -2.903A -0.009 -1.055 -0.031 -0.889

F12-Audience(Developers) 0.16 4.349A 0.001 0.042 0.019 0.653 0.01 1.194 0.131 3.643A

F13-Audience(System-Admins) -0.044 -1.141 0.017 0.61 -0.003 -0.099 -0.015 -1.72 0.007 0.189

F14-Audience(Others) -0.106 -2.171A 0.044 1.249 0.044 1.145 0.009 0.833 -0.165 -3.469A

F15-Audience(Advanced-End-Users) 0.034 0.583 -0.036 -0.889 0.012 0.254 0.054 4.103A
-0.045 -0.813

F16-Type of Project(Communications) 0.004 0.063 0.036 0.849 -0.004 -0.076 -0.037 -2.731A -0.002 -0.026

F17-Type of Project(Database) -0.333 -4.99A 0.079 1.626 0.064 1.198 -0.013 -0.829 0.029 0.439

F18-Type of Project(Desktop) 0.1 1.18 -0.134 -2.177A -0.116 -1.711 -0.012 -0.631 -0.031 -0.369

F19-Type of Project(Education) -0.348 -4.092A 0.228 3.706A 0.307 4.53A 0.045 2.269A 0.154 1.852

F20-Type of Project(Games) 0.041 0.682 -0.16 -3.629A -0.153 -3.163A 0.013 0.938 -0.035 -0.592

F21-Type of Project(Internet) 0.071 1.416 -0.034 -0.92 -0.007 -0.173 0.032 2.722
A

-0.004 -0.08

F22-Type of Project(Multimedia) 0.363 5.194A -0.254 -4.87A -0.298 -5.242A -0.029 -1.78 0.121 1.747

F23-Type of Project(Office) 0.074 0.968 0.254 4.536A 0.231 3.76A -0.034 -1.877 0.079 1.049

F24-Type of Project(Other) -0.535 -6.039
A

0.039 0.61 0.05 0.709 0.001 0.031 0.238 2.75
A

F25-Type of Project(Printing) 0.54 3.259A -0.221 -1.851 -0.177 -1.348 0.035 0.924 -0.136 -0.843

F26-Type of Project(Religion) 0.157 0.682 0.295 1.771 0.329 1.794 0.048 0.891 0.736 3.265A

F27-Type of Project(Scientific) -0.227 -3.341A 0.046 0.912 0.095 1.732 -0.001 -0.048 0.104 1.549

F28-Type of Project(Security) 0.384 4.153A -0.07 -1.038 -0.032 -0.428 0.004 0.188 0.002 0.02

F29-Type of Project(Sociology) -0.769 -3.226A 0.55 3.168A 0.512 2.684A -0.11 -1.986A 0.521 2.23A

F30-Type of Project(Software-Dev) 0.055 1.2 0.013 0.379 0.015 0.405 -0.008 -0.783 -0.042 -0.939

F31-Type of Project(System) 0.211 3.282A -0.263 -5.491A -0.324 -6.198A -0.036 -2.342A -0.006 -0.096

F32-Type of Project(Terminals) -0.1 -0.44 -0.199 -1.196 -0.231 -1.265 -0.008 -0.151 0.495 2.215A

F33-Type of Project(Text-Editors) 0.174 1.686 0.053 0.692 -0.087 -1.043 -0.069 -2.83A
0.039 0.384

F34-Life-Cycle(Planning) -0.21 -4.247A 0.026 0.749 -0.002 -0.048 -0.027 -2.389A -0.008 -0.165

F35-Life-Cycle(Pre-Alpha) -0.506 -9.41A 0.038 0.985 0.08 1.87 0.03 2.458A -0.263 -5.023A

F36-Life-Cycle(Alpha) -0.146 -3.233A -0.026 -0.785 -0.017 -0.471 0.006 0.618 -0.15 -3.407A

F37-Life-Cycle(Beta) 0.169 4.365
A

0.126 4.513
A

0.163 5.297
A

0.003 0.348 -0.034 -0.908

F38-Life-Cycle(Production) 0.948 23.811A 0.129 4.431A 0.239 7.423A 0.047 5.038A 0.183 4.632A

F39-Life-Cycle(Mature) 1.097 14.477A 0.112 2.028A 0.206 3.404A 0.067 3.783A 0.187 2.508A

F40-Life-Cycle(Inactive) -0.397 -3.834A
0.17 2.286A

0.137 1.676 -0.019 -0.818 -0.301 -2.986A

R-Squared

Dependent Variables

F1 - Attractiveness F2-Activeness F3-Efficiency F4-Likelihood of Task Completion F5-Time for Task Completion

2006, 2007, and 2008 2006, 2007, and 2008 2006, 2007, and 2008 2006, 2007, and 2008 2006, 2007, and 2008

2006; 2007; 2008

0.218; 0.174; 0.158

2006; 2007; 2008

0.45; 0.469; 0.476

2006; 2007; 2008

0.394; 0.406; 0.402

2006; 2007; 2008

0.029; 0.025; 0.029

2006; 2007; 2008

0.131; 0.112; 0.104  
* : Variable log-transformed. 
A
 : Significant at 0.05 level; T-value > 1.96.



92 
 

Independent Variables‟ Prediction Power 

  

 The model built to test propositions 1 to 8.5 has 5 equations that interest 

us the most. These equations intend to explain attractiveness, efficiency, 

likelihood of task completion, and average time for task completion based on 

projects‟ characteristics and life-span. Also, our tests successfully attempted to 

use attractiveness to predict activeness, efficiency, likelihood of task completion 

and time for task completion. 

 In explaining attractiveness, a project‟s characteristics (license type, 

intended audience, type of project, and life-cycle stage) plus project life-span 

were capable of accounting for 21.8% (2006), 17.4% (2007), and 15.8% (2008) 

of attractiveness‟ variance. These same independent variables plus 

attractiveness were used to predict activeness, efficiency, likelihood of task 

completion and time for task completion, achieving different degrees of 

predictability. 

Activeness‟ explained variance was of 45% in 2006, 46.9% in 2007, and 

47.6% in 2008. Also, the independent variables were capable of explaining 

39.4% of efficiency’s variance in 2006, 40.6% in 2007, and 40.2% in 2008. In its 

turn, likelihood of task completion‟s equation was capable of explaining 2.9%, 

2.5%, and 2.9% of its variance in 2006, 2007, and 2008, respectively. Finally, 

towards the prediction of average time for task completion, attractiveness, project 

life-span and project’s characteristics were able to explain 13.1% of its variance 



93 
 

in 2006, 11.2% in 2007, and 10.4% in 2008 (see Table 10 for a complete list of 

R-squared values). 

Table 11 – Decisions: Empirical Results on Propositions 1 to 8.5. 

Propositions Decision Variable: Direction 

P1: A project‟s attractiveness is a significant predictor of a 
project‟s activeness. 

Not rejected 
Positive 

P2: A project‟s attractiveness is a significant predictor of a 
project‟s efficiency. 

Not rejected 
Positive 

P3: A project‟s attractiveness is a significant predictor of a 
project‟s overall likelihood of task completion. 

Not rejected 
Negative 

P4: A project‟s attractiveness is a significant predictor of a 
project‟s average time for task completion. 

Not rejected 
Positive 

P5.1: A project‟s license type is a significant influencer of its 
attractiveness. 

Not rejected 
Dual_license: 
Positive 

P5.2: A project‟s license type is a significant influencer of its 
activeness. 

Not rejected 
Both_restrictions: 
Negative 

P5.3: A project‟s license type is a significant influencer of its 
effectiveness. 

Not rejected 
Both_restrictions: 
Negative 

P5.4: A project‟s license type is a significant influencer of its 
overall likelihood of task completion. 

Not rejected 
Both_restrictions: 
Positive 

P5.5: A project‟s license is a significant influencer of its average 
time to complete tasks. 

Rejected 
No effect 

P6.1: A projects‟ intended audience significantly influences its 
attractiveness. 

Not rejected 
End-users: Positive 
Developers: Positive 
Others: Negative 

P6.2: A projects‟ intended audience significantly influences its 
activeness. 

Not rejected 
End-users: Negative 

P6.3: A projects‟ intended audience significantly influences its 
efficiency. 

Not rejected 
End-users: Negative 

P6.4: A projects‟ intended audience significantly influences its 
overall likelihood of task completion. 

Not rejected 
Advanced-end-
users: Positive 

P6.5: A projects‟ intended audience significantly influences its 
average time for task completion. 

Not rejected 
Developers: Positive 
Others: Negative 

P7.1: A project‟s topic is a significant influencer of a project‟s 
attractiveness. 

Not rejected 

Database: Negative 
Education: Negative 
Other: Negative 
Scientific: Negative 
Sociology: Negative 
Multimedia: Positive 
Printing: Positive 
Security: Positive 
System: Positive 

P7.2: A project‟s topic is a significant influencer of a project‟s 
activeness. 

Not rejected 

Desktop: Negative 
Games: Negative 
Multimedia: 
Negative 
System: Negative 
Education: Positive 
Office: Positive 
Sociology: Positive 

P7.3: A project‟s topic is a significant influencer of a project‟s 
efficiency. 

Not rejected 

Games: Negative 
Multimedia: 
Negative 
System: Negative 
Education: Positive 
Office: Positive 
Sociology: Positive 



94 
 

Propositions Decision Variable: Direction 

P7.4: A project‟s topic is a significant influencer of a project‟s 
overall likelihood of task completion. 

Not rejected 

Communications: 
Negative 
Sociology: Negative 
System: Negative 
Text-Editor: 
Negative 
Education: Positive 
Internet: Positive 

P7.5: A project‟s topic is a significant influencer of a project‟s 
average time for task completion. 

Not rejected 

Other: Positive 
Religion: Positive 
Sociology: Positive 
Terminals: Positive 

P8.1: A project‟s development status is a significant influencer 
of a project‟s attractiveness. 

Not rejected 

Planning: Negative 
Pre-alpha: Negative 
Alpha: Negative 
Beta: Positive 
Production: Positive 
Mature: Positive 
Inactive: Negative 

P8.2: A project‟s development status is a significant influencer 
of a project‟s activeness. 

Not rejected 

Beta: Positive 
Production: Positive 
Mature: Positive 
Inactive: Positive 

P8.3: A project‟s development status is a significant influencer 
of a project‟s efficiency. 

Not rejected 
Beta: Positive 
Production: Positive 
Mature: Positive 

P8.4: A project‟s development status is a significant influencer 
of a project‟s overall likelihood of task completion. 

Not rejected 

Planning: Negative 
Pre-alpha: Positive 
Production: Positive 
Mature: Positive 

P8.5: A project‟s development status is a significant influencer 
of a project‟s average time for task completion. 

Not rejected 

Pre-alpha: Negative 
Alpha: Negative 
Production: Positive 
Mature: Positive 
Inactive: Negative 

 

 

Block 2: Testing the Effect of Task Complexity as a Moderator 

 

Projects‟ Classification and Working-Sample Characteristics 

 

 To perform empirical tests derived off propositions 9 to 12, we utilized a 

slightly different filter to select our working-sample. In addition to the previous 

filter (see page 71); only projects without missing data on the variables we used 

to calculate task complexity were included in the sample. Although some might 

Table 11 (continued) – Decisions: Empirical Results on Propositions 1 to 8.5. 

 



95 
 

question this procedure of avoiding missing data in the sample on grounds of 

artificiality, we believe there are stronger reasons favorable to its adoption. 

First, one needs to realize that we are interested in separating projects 

based on their “complexity” for further evaluation of whether the strength of the 

connection between constructs change depending on that same “projects‟ 

complexity”. Therefore, if a project‟s complexity cannot be calculated due to 

missing data, one simply cannot classify it as more or less complex without 

relying on chance or doubtful procedures. 

 Unfortunately, we could not classify projects according to their complexity 

as we intended and described in Table 4 (Chapter 3). Our initial intentions were 

to classify projects‟ level of complexity along a continuum, from simple to very 

complex, with various categories within those extremes. However, the calculation 

of a project tasks complexity40 index resulted in an extremely skewed distribution, 

with the vast majority of the projects scoring 1 (one) on that index. 

To exemplify, from the 149,542 projects in the non-filtered 2006 sample, 

only 48 projects scored higher than or equal to 2 on task complexity (7 projects 

scored higher than or equal to 3). This scenario forced us into developing a new 

strategy to separate projects based on their complexity, focusing on the 

achievement of acceptable group sizes for SEM utilization. Accordingly, instead 

of working with many groups, as originally intended, we classified projects in two 

                                            

40
 The number of other modules a specific module exchanges information with, creating 

interdependency. 



96 
 

groups (separated by task complexity‟s median): (i) those that scored 1, and (ii) 

those that scored more than 1. 

This separation method gave us 6 (six) groups to work with; as the 2006, 

2007, and 2008 samples were broken down into two groups each, of “low” and 

“high” complexity projects, so to speak. These groups have sizes of 1,216 (2006-

low complexity), 296 (2006-high complexity), 979 (2007-low complexity), 214 

(2007-high complexity), 978 (2008-low complexity) and 209 (2008-high 

complexity). These numbers are shown in Table 12. 

 

Model Building and EQS Coding 

  

 In assembling the model for testing the moderation effects specified in 

propositions 9 to 12, we focused exclusively on the constructs of interest. These 

propositions posit that the relationships between attractiveness and (1) 

activeness, (2) efficiency, (3) likelihood of task completion, and (4) time for task 

completion are moderated by task complexity. Accordingly, we did not include 

any of the dummy variables nor the control variable in this model. That left us 

with 7 variables (3 for attractiveness; 1 for activeness; 1 for efficiency; 1 for 

likelihood of task completion; 1 for time for task completion). The univariate 

statistics of these variables are in Table 12, where it is possible to see that no 

variable has Skewness or Kurtosis outside the range of +/- 1. 

 Each one of the six groups‟ covariance matrix was calculated by EQS 

based on the raw data inputted to the software. These six distinct covariance 



97 
 

matrices are available in Appendix D. Similarly to the first model we built to test 

propositions 1 to 8.5, we utilized Maximum Likelihood (ML) as the estimation 

method, the variables were entered in their log-transformed form, and the 

disturbance terms from the equations were allowed to correlate for the same 

reasons explained previously. 

 As for the equations coded for analysis in EQS, four of them are of interest 

for testing the moderation-propositions. In each one of them, attractiveness is the 

independent construct, predicting activeness in the first equation, efficiency in the 

second, likelihood of task completion in the third, and time for task completion in 

the fourth (dependent variables). 

As explained, the effect of task complexity was captured by the separation 

of the projects in groups of low and high complexity. So, in operational terms, our 

task was to test whether attractiveness‟ coefficients, developed to predict each 

one of those four dependent variables, are statistically different from each other 

across all six samples (groups) created to separate low- from high-complexity 

projects. This approach compares to a between-group difference detection using 

an ANOVA-type of analysis. 

 Nevertheless, this is not the only approach to test for moderation using 

SEM. Besides the multi-sample analysis we adopted, at least one alternative 

approach, referred to as product-term regression, is known. To perform a test 

using product-term regression, one has to create an additional variable, which is 

the result of the independent variable times the moderator, and regress it on the 

dependent variable, together with the original independent variable. The 



98 
 

statistical significance of this calculated variable works as a test for the 

moderation. 

Although some previous research have reported that multi-sample 

analysis (our approach) performs slightly worse than product-term regression (R. 

A. Ping, 1996) – detecting spurious interactions 8% of the time (against 3%); 

more recent findings in the information systems area suggest that the 

covariance-based SEM multi-sample analysis works just as well as any other 

approach when large sample sizes with normal data are used (Qureshi & 

Compeau, 2009). Additionally, no technique works satisfactorily under conditions 

of high Skewness and Kurtosis (Qureshi & Compeau, 2009). Accordingly, our 

chosen approach seems to be a reasonable one in face of the variables and 

samples in place41. 

 

Attractiveness‟ Reliability 

 

 As we worked with different samples to test for the moderation role of 

project‟s task complexity, it is necessary to re-evaluate attractiveness’ internal 

consistency. Accordingly, we calculated attractiveness’ Cronbach‟s alpha for 

each one of the six subsamples we ended up working with. 

 All subsamples reach the threshold of 0.7 normally adopted in the 

literature. The subsamples of projects classified as of low complexity achieved 

                                            

41 
To double check our assumption, we ran the moderation tests using the regression-approach. 

The conclusions were the same. 



99 
 

0.711, 0.721, and 0.723 in 2006, 2007, and 2008, respectively. The high-

complexity projects‟ subsamples have Cronbach‟s alphas of 0.69 (2006), 0.696 

(2007), and 0.703 (2008). Although two of the high-complexity subsamples are 

slightly below the 0.7 threshold, the difference is only of 0.01 and 0.004 and may 

be justified by their smaller sample-sizes. Therefore, we consider attractiveness’ 

internal consistency satisfactory and proceed to the models results presentation. 

 

Table 12 – Descriptive Statistics: Variables for Moderation Testing. 

2006-LC 2006-HC 2007-LC 2007-HC 2008-LC 2008-HC
Sample Size 1216 294 979 214 978 209

Mean 5.003 5.246 4.889 5.081 4.870 4.994

Std. Deviation 2.521 2.718 2.404 2.593 2.398 2.577

Skewness 0.276 0.134 0.281 0.216 0.264 0.252

Kurtosis 0.072 -0.467 0.116 -0.171 0.100 -0.095

Mean 8.968 8.960 9.106 9.107 9.309 9.183

Std. Deviation 2.261 2.483 2.172 2.519 2.138 2.506

Skewness 0.192 0.155 0.219 0.324 0.303 0.416

Kurtosis 0.275 -0.209 0.417 0.183 0.487 0.253

Mean 1.671 1.873 1.650 1.828 1.646 1.810

Std. Deviation 0.793 0.857 0.791 0.829 0.801 0.830

Skewness 0.822 0.491 0.780 0.506 0.757 0.631

Kurtosis 0.827 -0.273 0.475 -0.281 0.263 -0.058

Mean 3.361 3.729 3.208 3.687 3.306 3.712

Std. Deviation 1.807 1.820 1.813 1.855 1.834 1.798

Skewness 0.322 0.150 0.413 0.185 0.372 0.210

Kurtosis 0.008 -0.488 0.175 -0.455 0.119 -0.505

Mean 2.786 3.221 2.699 3.207 2.734 3.152

Std. Deviation 1.928 1.947 1.916 2.004 1.942 1.967

Skewness 0.449 0.202 0.568 0.231 0.550 0.240

Kurtosis -0.193 -0.576 0.099 -0.608 0.010 -0.614

Mean 0.771 0.788 0.833 0.838 0.772 0.760

Std. Deviation 0.409 0.365 0.428 0.408 0.411 0.386

Skewness 0.499 0.347 0.348 0.314 0.531 0.452

Kurtosis -0.437 -0.298 -0.819 -0.715 -0.468 -0.406

Mean 15.075 14.967 15.122 15.023 15.194 15.069

Std. Deviation 1.866 1.798 1.926 1.752 1.926 1.805

Skewness -2.326 -2.521 -2.075 -1.860 -2.067 -1.763

Kurtosis 9.109 10.571 6.998 6.416 7.173 5.835

OBS.: LC=Low Complexity; HC=High Complexity.

loglikelihood

logaverage

Descriptives Statistics

logpageviews

logdownloads

logmembers

logactiveness

logefficiency

 

 

Model Comparison Procedure – An Overall Test of Task Complexity Moderation 

 
 In a fashion similar to the one done to test propositions 1 to 8.5, we 

developed two SEM models, with and without constraints that forced EQS to find 

equal attractiveness‟ coefficients in predicting each dependent variable across all 



100 
 

six subsamples42. As Table 13 shows, the constrained-model has a chi-square of 

285 (d.f.=68; p-value <0.01), whereas the unconstrained-model has a chi-square 

of 279 (d.f.=48; p-value<0.01). Both have good model-to-data fit indices with a 

CFI of 0.99 for the constrained- and 0.989 for the unconstrained-model. 

A comparison between the models leads to the conclusion that the 

constrained model is preferable to the unconstrained model for at least two 

reasons. First, the chi-square difference between them (5.778) is smaller than 

the critical chi-square value of 31.41 (d.f.=20; α=0.05), suggesting that no 

significant difference exists in terms of model-to-data on estimating the 

coefficients independently for each subsample. Second, the most reliable fit 

index, RMSEA, indicates that the constrained-model is a better fit, scoring 0.029 

(against 0.035 of the unconstrained one). 

Although this model comparison would be sufficient evidence that task 

complexity does not work as a moderator of the relationships between 

attractiveness and activeness, efficiency, likelihood of task completion and time 

for task completion, we decided to test each proposition separately to increase 

our confidence in the results. The next section presents a statistical test for each 

plus a description of the equations resulting from the preferred constrained-

model. 

 

 

 

                                            

42
 The actual constraints and their relationship to each proposition can be seen in Table 15. 



101 
 

Equations‟ Results and Decisions on Propositions 9 to 12 

 

The results presented in Table 14  are consistent with the ones we 

achieved on predicting activeness, efficiency, likelihood of task completion and 

time for task completion using attractiveness on the larger samples (Table 10). 

Attractiveness is a statistically significant predictor of these dependent variables 

influencing: (a) activeness, positively and being capable of explaining from 49.3% 

to 55.4% of its variance; (b) efficiency, positively and explaining from 44.2% to 

49.4% of its variance; (c) likelihood of task completion, negatively and explaining 

from 0.9% to 1.1% of its variance; and (d) time for task completion, positively and 

explaining from 11% to 13% of its variance (Table 14). 

To test propositions 9 to 12 and the moderation roles of task complexity, 

we imposed a total of 20 constraints to this SEM model. These 20 constraints 

may be separated in 4 groups, each representing one proposition, of 5 

constraints. For example, to evaluate whether the relationship between 

attractiveness and activeness was moderated by task complexity, we coded in 

EQS: “1: (1,F2,F1)-(2,F2,F1)=0; 2:(1,F2,F1)-(3,F2,F1)=0; 3:(1,F2,F1)-

(4,F2,F1)=0; 4:(1,F2,F1)-(5,F2,F1)=0; 5:(1,F2,F1)-(6,F2,F1)=0”. The first 

constraint establishes that the coefficient (path) associated with attractiveness to 

predict activeness in group 1 (2006: low-complexity) and group 2 (2006: high-

complexity) are equal. The second one specifies that the path between 

attractiveness and activeness are also equal across samples 1 (2006: low-

complexity) and 3 (2007: low-complexity). The list of constraints goes on to cover 



102 
 

each and every path between factors equal across groups (see Table 15 for a 

complete list). 

With all constraints set, we ran the Lagrange-Multiplier test to evaluate 

whether the model would gain in model-fit (decrease in chi-square) if each one of 

those 20 constraints were dropped, one-by-one. In other words, this test informs 

whether each path-equality constraint harms the estimation method, which would 

be then better off estimating attractiveness‟ coefficients independently for each 

subsample (Dow et al., 2008) – providing support for moderation. 

The hypothesis-testing procedure has a general form. Each constraint 

represents a null-hypothesis, which states that two paths are equal. If the 

Lagrange-Multiplier test returns a p-value smaller than 0.05, we would have 

evidence to reject the null-hypothesis, thus providing support for the moderation. 

However, we were unable to reject any of the null-hypothesis created by the 

constraints, leading us to the same conclusion that task complexity, as collected 

and calculated, does not moderate the relationships between attractiveness and 

(i) activeness, (ii) efficiency, (iii) likelihood of task completion and (iv) time for 

task completion. Therefore, we reject propositions 9, 10, 11 and 12 (Table 15)43.

                                            

43
 Besides the univariate tests presented, we also ran the multivariate version of the Lagrange-

Multiplier test to evaluate whether there was any specific path – not necessarily in the order we 
entered – that could be moderated by task complexity, increasing even more our confidence in 
the results. The multivariate results are consistent with the univariate ones as there is no 
evidence for rejection of any of the null-hypothesis as well (see Appendix E for these results). 



103 
 

Table 13 – Model Comparison for Task Complexity Moderation Testing. 

Comparison
2007-High 2008-Low 2008-High 2007-High 2008-Low 2008-High

Sample Sizes 214 978 209 214 978 209

Attractiveness Cronbach's Alpha 0.696 0.723 0.703 0.696 0.723 0.703

Chi-Square 5.778 (20 d.f.)

P-Value for Chi-Square Same

Model Fit (CFI) 0.001

B-B Normed Fit Index 0.000

Root Mean Square Residual (RMR) -0.032

RMSEA -0.006

2007-Low

0.711 0.690 0.721

Model with Equality Constraints

1216 294 979

285.586 (68 Degrees of Freedom)

0.029

Model without Equality Constraints
2006-Low 2006-High 2007-Low

0.711 0.69 0.721

279.808 (48 Degrees of Freedom)

0.990

0.987

0.042

< 0.01

2006-Low 2006-High

1216 294 979

Favor Model with Constraints

31.410Chi-Square Critical Value (0.05; 20 d.f.):

Decision (given 5.778 < 31.410):

< 0.01

0.989

0.987

0.074

0.035

 

 

 

Table 14 – Equations: Attractiveness to predict the Dependent Variables. 

Samples:

Independent Variable

F1-Attractiveness*

R-Squared

43.201A -0.02 -5.49A

F3-Efficiency* F4-Likelihood of Task Completion*

0.684

F5-Time for Task Completion*

Dependent Variables

Coef. T-Statistic Coef. T-Statistic Coef. T-Statistic

2006-L; 2006-H; 2007-L; 2007-H; 2008-L; 2008-H 2006-L; 2006-H; 2007-L; 2007-H; 2008-L; 2008-H

F2-Activeness*

0.119; 0.124; 0.11; 0.13; 0.11; 0.1250.554; 0.523; 0.543; 0.493; 0.537; 0.528

2006-L; 2006-H; 2007-L; 2007-H; 2008-L; 2008-H

0.494; 0.473; 0.489; 0.429; 0.481; 0.442

2006-L; 2006-H; 2007-L; 2007-H; 2008-L; 2008-H

0.009; 0.011; 0.008; 0.009; 0.009; 0.01

19.869A

Coef. T-Statistic

0.3260.681 46.195A

 
 A

 : Signicant at α=0.05; T-value>1.96. 

 * : Variable Log-Transformed. 

 



104 
 

 In summary, 23 out of 28 propositions developed in this dissertation were 

not rejected, giving the model a success rate of roughly 82%. Additionally, the 

SEM models developed obtained good model-to-data fit, indicating that the 

theory developed around attractiveness with the indicators we have chosen and 

collected might be a fruitful one. Next, we present our final chapter, discussing in-

depth the reasons we believe our results turned out as they did and how this 

theory and its empirical results might inform the academic and the managerial 

communities. 

 
Table 15 – Decisions on Moderation-Propositions 9 to 12. 

Propositions Imposed Constraints 
(#: Hypothesis) 

Lagrange-Multiplier  
For Releasing Constraints 

(P-Values) 
Decision 

P9: The overall 
complexity of a 
project‟s tasks 
moderates the 
relationship between 
attractiveness and 
activeness. 

1: (1,F2,F1)-(2,F2,F1)=0; 0.78 

Reject 
P9 

2: (1,F2,F1)-(3,F2,F1)=0; 0.853 

3: (1,F2,F1)-(4,F2,F1)=0; 0.801 

4: (1,F2,F1)-(5,F2,F1)=0; 0.733 

5: (1,F2,F1)-(6,F2,F1)=0; 0.513 

P10: The overall 
complexity of a 
project‟s tasks 
moderates the 
relationship between 
attractiveness and 
efficiency. 

6:  (1,F3,F1)-(2,F3,F1)=0; 0.755 

Reject 
P10 

7:  (1,F3,F1)-(3,F3,F1)=0; 0.848 

8:  (1,F3,F1)-(4,F3,F1)=0; 0.791 

9:  (1,F3,F1)-(5,F3,F1)=0; 0.647 

10: (1,F3,F1)-(6,F3,F1)=0; 0.485 

P11: The overall 
complexity of a 
project‟s tasks 
moderates the 
relationship between 
attractiveness and 
overall likelihood of 
task completion. 

11:  (1,F4,F1)-(2,F4,F1)=0; 0.275 

Reject 
P11 

12:  (1,F4,F1)-(3,F4,F1)=0; 0.977 

13:  (1,F4,F1)-(4,F4,F1)=0; 0.703 

14:  (1,F4,F1)-(5,F4,F1)=0; 0.457 

15:  (1,F4,F1)-(6,F4,F1)=0; 0.621 

P12: The overall 
complexity of a 
project‟s tasks 
moderates the 
relationship between 
attractiveness and 
average time of task 
completion. 

16:  (1,F5,F1)-(2,F5,F1)=0; 0.944 

Reject 
P12 

17:  (1,F5,F1)-(3,F5,F1)=0; 0.932 

18:  (1,F5,F1)-(4,F5,F1)=0; 0.512 

19:  (1,F5,F1)-(5,F5,F1)=0; 0.988 

20: (1,F5,F1)-(6,F5,F1)=0; 0.504 



105 
 

CHAPTER 5 – CONCLUSIONS, DISCUSSIONS AND FINAL REMARKS 

 

After an exercise of theory development, this dissertation empirically 

analyzed open source software projects “from the outside” in an attempt to 

discover patterns in their internal dynamics. The model and its results, if put in a 

timeline and summarized, inform us about OS projects on a variety of areas. In 

the model background, there is a pool of OS projects created as a result of 

going-open initiatives from organizations and individuals, and there is a 

population interested in using and contributing to these projects‟ software. Thus, 

our first concern was to explore what drives people to specific projects; or, what 

types of projects are more attractive to people. 

To address this concern, we focused on characteristics that are capable of 

“positioning” projects better (worse) to the eyes of the population browsing for 

software to fulfill their needs as well as intrinsic and extrinsic motivations, thereby 

influencing projects‟ attractiveness. Operationally, we defined attractiveness as 

the numbers of website visits, downloads and members a project has. 

Additionally, we stated that to be attractive represents only partially OS projects‟ 

goals, as ultimately they pursue not just to be adopted and used by the people, 

but also improved by them. Therefore, the question of whether attractiveness 

leads to improvements in the software appears automatically. We studied these 

improvements in the form of activeness, efficiency, likelihood of task completion 

and time for task completion, which are all, at least, necessary conditions for 

improvements in the project (software quality) to occur. 



106 
 

We believe our endeavor and its results are timely and useful for public 

and private organizations as well as individuals as many have increased their 

involvement in the open source movement over the last few years. Additionally, 

we believe that to create awareness on how and why these projects operate the 

way they do helps to perpetuate their creation and long-term existence through 

organizational intervention, leading to more knowledge available to the 

population in the form of software source code. 

Our study aimed at explaining 5 constructs related to open source 

projects: attractiveness, activeness, efficiency, likelihood of task completion and 

time for task completion. For that, 35 variables plus a moderator were utilized, 

accounting for a variety of projects‟ characteristics. And besides these 36 

variables, attractiveness was also used in the attempt to explain activeness, 

efficiency, likelihood of task completion and time for task completion. 

Accordingly, our study‟s findings can be described based on 1) the selection of a 

repeated cross-sectional SEM model over a simple cross-sectional one and the 

results of 5 equations, one for each endogenous construct; and 2) a comparison 

between two SEM models to test the moderation. 

The first model comparison focused on empirically evaluating the overall 

performance of the theoretical model in two distinct situations. The first involved 

an estimation procedure that was performed in each one of the samples 

independently. The second dealt with an estimation took all three samples into 

consideration at once to calculate same set of estimates (betas) to all three 

samples. This comparison provided a clue on the theoretical model‟s robustness 



107 
 

as the procedure functions as a re-test of the model across samples at same 

time that it reduces the chances of sampling errors and fluctuations. If the model 

performance (fit) had deteriorated over time, an indication against its validity 

would have been produced. However, the results indicated that the model not 

only fits the data well, but that it also performs better when more data from 

various samples spread over time is inputted to develop estimates, reducing the  

residual values (unexplained part of variables‟ variance). 

Having established the overall model performance as satisfactory, an 

analysis of propositions 1 to 8.5 followed. Five equations were developed for this 

analysis. One of them has attractiveness as the dependent variable, being 

explained by project‟s license type, intended audience, type of project, life-cycle 

stage and life-span. All predictors were found to be significantly associated with 

attractiveness, explaining roughly 22% of its variance in 2006. Nevertheless, 

revisiting some of the results is worthwhile. 

For example, projects with software under licenses with distinct 

requirements, successfully accounting for some contingency of their audience, 

tend to be more attractive than others. Also, the results suggest that: 1) projects 

should avoid having the audience others attached to their project, as this may 

hinder their attractiveness; 2) the influence of type of project is most negative on 

their attractiveness when they are in the topics of sociology and other, and 

positive when listed in printing and security categories; 3) a pattern exists on the 

influence of life-cycle stage on attractiveness. The pattern indicates that a 

project‟s 3-first life-cycle stages harm attractiveness, especially when in pre-



108 
 

alpha. However, if the project makes it to the fourth stage, this influence is 

reversed. And of course, when in the inactive stage, attractiveness is influenced 

negatively. 

The second and third equations tackle the explanation of activeness and 

efficiency, which happen to have a very similar pattern when it comes to the 

explanatory variables found significant (with the exceptions of desktop and 

inactive). Among the most interesting results, we found that projects licensed 

under GPL, the most common and restrictive open source license, tend to be 

less active as well as less efficient than projects that do not have GPL attached 

to them. This finding is consistent with previous studies that pointed out that 

organizations and individuals see GPL requirements negatively, decreasing their 

intention to contribute to the project (Fershtman & Gandal, 2007; Lerner & Tirole, 

2005), and provides a counter-argument to those who suggested that the fear of 

open source software being “hijacked” into proprietary applications, maximized 

by unrestrictive licenses, would keep people from contributing (Sauer, 2007). 

Furthermore, three other comments on the results are worth-making: 1) to target 

end-users affects activeness and efficiency negatively, but projects listed under 

topics such as education, sociology and office, which are supposedly aimed at 

end-users, tend to score higher on activeness and efficiency thus creating a 

challenge for the interpretation; 2) projects listed as inactive have higher scores 

of activeness. This is surprising and not an easy finding to justify, but perhaps it 

simply means that members-users of the software keep reporting bugs and 

features after a project is considered inactive. Moreover, it is noteworthy that 



109 
 

these bugs and features reported tend to not be closed, as the effect of inactive 

on efficiency is not significant, showing that inactive software tend to be 

stagnated as the category name implies; 3) life-span is not a significant 

influencer of activeness and efficiency, showing that the number bugs reported 

and features requested do not increase as projects get older and suggesting that 

software‟s quality might be indeed increasing with time as less problems are 

found in the long-term. 

The fourth equation was capable of explaining at best 3% of likelihood of 

task completion‟s variance. Surprisingly, the results suggest that more attractive 

projects have smaller likelihood to complete their tasks, indicating that an 

overload of tasks might occur as more tasks are requested (i.e., activeness) in 

more attractive projects. In a similar pattern, projects under the GPL license are 

more likely to complete their tasks, as these projects tend to be less active in the 

sense of features requests and bug reports. Nevertheless, the explained 

variance of likelihood of task completion successfully explained by the model is 

so low that from a practical point of view, the model interpretation is 

uninteresting. 

The fifth and last equation focuses on the explanation of time for task 

completion, accounting for 13% of its variance in 2006. More attractiveness is 

associated with more time for task completion, suggesting another side-effect of 

an increasing number of requests (activeness) generated by higher levels of 

attractiveness. Having more tasks to deal with and more members gathered 

around these tasks, projects tend to slow down their work-pace. This pattern of 



110 
 

influences, from attractiveness to activeness to time for task completion, is also 

supported by the associations of life-span with attractiveness and time for task 

completion, as they are all positive. Furthermore, projects‟ life-cycle stage has an 

interesting pattern of influence on time for task completion. Projects tend to work 

faster at pre-alpha and alpha and slower at production and mature, supporting 

the positive association between life-span and time for task completion. 

Moreover, projects seem to rush for task closure when at inactive. 

The second comparison between two SEM models provided a test for the 

proposed moderated-by-task complexity effects between attractiveness and 1) 

activeness, 2) efficiency, 3) likelihood of task completion, and 4) time for task 

completion. Statistically, no indication that task complexity works as a moderator 

in these relationships was produced. This finding is consonant with the results of 

an experiment that investigated the moderating effect of task complexity on the 

relationship between number of people working on the coding and software 

quality (Balijepally, Mahapatra, Nerur, & Price, 2009). Thus, further evidence that 

the connection between number of people and software quality (or efficiency) is 

direct, and not moderated by task complexity, was found. 

Commonly, members of open source projects are developers and users of 

the community software, which broadens their perspectives on software quality to 

contain technical, functional and social issues. Moreover, these OS members are 

in an environment where many are likely to contribute for one‟s (developer) 

contribution also benefits one (user). That is a recipe for success, giving these 

communities an edge over software produced by an organization where 



111 
 

developers and users are independent entities. Accordingly, more members 

should indeed lead to higher software quality, linearly. No need to worry about 

attracting free-riders, reducers of the probability of success (Bessen, 2005), as, 

apparently, the phenomenon of free-riding is not significant in OS projects. 

Johnson‟s (2002, p. 644) prediction that “when more individuals are present, the 

incentive to free-ride is raised”, so that contributions become less likely to occur , 

has no support from our analysis. Thus, the theme of highest value to 

organizations interested in “going-open” is how to set up and run a project so to 

maximize its attractiveness; and the best way to improve our knowledge-base on 

this theme is promoting the science of how to design and manage OS projects. 

 
Implications for Theory and Practice 

 

 Although previous studies have suggested the importance of 

attractiveness to open source software projects (Agerfalk & Fitzgerald, 2008; 

Stewart & Gosain, 2006), this is the first study to directly model it as a 

multifaceted latent construct and investigate theoretically and empirically its 

causes and consequences. And for that uniqueness, we believe this research 

contributes to theory and practice in many ways. 

 For theory, the results of this research suggest that variables such as the 

numbers of page views, downloads and members should not be treated as 

causes of each other nor as final dependent variables on studies of open source 

projects. That is because these variables are significantly correlated with each 

not because they cause each other, as one could interpret, but due to the 



112 
 

existence of a common cause to all of them, attractiveness. Moreover, these 

variables alone, or in combination, cannot improve software or service of open 

source communities. They are necessary conditions for improvements to occur, 

but none of them is sufficient. Therefore, to study what the consequences of 

these variables are, treating them as independent variables (or mediators), is 

vital to capture a more accurate picture of what success represents to OS 

projects, their sponsors and members. 

 Furthermore, this research sheds new light on a dilemma in the 

Information Systems literature, where one stream claims that quantity of people 

increases diversity, and that diversity is a good thing for problem-solving (“the 

more eye balls, the less bugs”) and for innovation generation (Raymond, 1999; 

West & O‟Mahony, 2005); and another, that points out recent empirical evidence 

suggesting that the relationship between the number of members of a software 

project and its ability to “evolve” a piece of software is not a significant one, not 

affecting effectiveness, efficiency, nor quality of these teams and therefore 

contradicting the other stream (Balijepally et al., 2009). 

 Without a claim to definitively close the debate, but perhaps conciliating 

the two sides, this research presents effects and side-effects to open source 

software projects with increasing attractiveness (e.g., number of members). On 

the one hand, these projects tend to locate and fix more bugs, request and 

develop more features, and to ask and answer more questions in general, 

creating an environment where innovations are more likely to occur and that in 

long-term generates higher-quality software. Nevertheless, these same projects 



113 
 

with increasing attractiveness tend to reduce their likelihood to solve their 

increasing number of bugs reported and features requested. Additionally, 

projects with higher attractiveness generating more contributions from members 

on bugs and features and from users on support requests tend to reduce their 

work-pace, taking more time to solve these issues. Therefore, the answer to the 

question of whether number of members affects efficiency, effectiveness and 

software quality in general depends on the definitions of efficiency, effectiveness 

and software quality one decides to adopt. 

 For practice, Agerfalk & Fitzgerald (2008, p. 394) have already established 

the need for organizations involved in open source software projects “to market 

the attractiveness of the project and improve its visibility”. But left to the 

organizations to deal with is the question of how they can attempt to maximize 

their projects‟ attractiveness outside of the advertisement realm. 

By focusing on the impact of a project‟s characteristics on attractiveness, 

our study can guide organizations on many practical matters that have to be 

faced when transforming a closed and proprietary software into an open source 

project. First, a glimpse on how attractive a piece of software would be when 

released open source could be generated by looking at equation 1, which has 

attractiveness as the dependent variable of a variety software characteristics. 

These characteristics could work as a check-list to organizations and their 

software. 

Moreover, in a more prescriptive form, organizations may use the results 

of equation 1 to identify among their software the ones more likely to succeed if 



114 
 

“open sourced”, helping to direct and prioritize resources, especially of the less 

experienced organization, more effectively. Finally, our study may aid 

organizations on the crucial decision of choosing one or more licenses, and of 

what kind (more or less restrictive) to register the software. It is known that such 

choice affects directly people‟s decisions to participate in and contribute to a 

project and of companies to adopt or not adopt an application (Agerfalk & 

Fitzgerald, 2008). Our results indicate that a contingency approach is preferable 

when such decision is faced for projects‟ attractiveness tends to be higher when 

they have more than one license attached, thereby fulfilling the diverse 

motivations of their members and intended audiences more effectively. 

 

Limitations 

 
Consistent with any research, this one does not lack limitations. Research 

limitations may be divided in two kinds, internal and external. The external 

limitations relate to the things that could have been included in the study but 

were not; and the internal ones relate to how the things that were done in the 

study could have been done differently. Fortunately, cases from both categories 

can be seen as opportunities for future research as well. 

Among the internal limitations of our study, we were able to identify the 

following. First, on capturing the effects of license type on the endogenous 

variables, we did not classify each and every license available to OS projects 

according to their restrictiveness. We ignored the licenses not classified by 

Lerner & Tirole (2005) and therefore were not able to study their effects on 



115 
 

projects‟ attractiveness and dynamics. Ideally, we should have read the content 

of these licenses and classified them, but we considered that outside of the 

intended scope of this research. Second, although we collected data over 

different time periods, we analyzed it using the traditional cross-sectional 

approach, not the longitudinal one. In doing so, we were not able to account for 

some things known to be beneficial to studies such as controlling for auto-

correlations and constructs‟ change over time. 

Amid the external limitations of our study, we thought of a variety of 

variables that were omitted from our analysis but could have an impact on the 

endogenous variables investigated, and perhaps even interact with the 

exogenous variables, thereby changing their relationships with the endogenous 

ones. This limitation can never go away from any study and represents the main 

reason why researchers can never, strictly speaking, claim that a causal 

relationship between two variables in fact exists for it is impossible to be sure that 

nothing else related to the variables is missing. 

Specifically, the things we could name that are likely to matter to future 

studies are: 1) the level of technical knowledge of the community members, as 

that can directly affect projects‟ activities and software characteristics; 2) the level 

of trust between members, possibly affecting their likelihood to share information 

with each other and therefore to contribute more or less; and 3) the amount of 

sponsored members in the projects, as the presence of members that are not 

volunteers and then dedicate their time to the project for monetary motivations 

may complicate a comparison with completely non-sponsored communities. 



116 
 

Future Research 

 

 The best way to address the limitations we identified in this research is 

with follow-up studies. A wide variety of these studies can be derived from our 

results and conclusions, covering topics related to both content and method. On 

the content side, a more complete study of the influence of licenses is 

encouraged for at least two reasons. First, as we have mentioned, it was not 

possible to consider all licenses available to OS projects. Second, the 

phenomenon of dual-licensing, which is expressed by companies such as 

Trolltech and MySQL offering both commercial and open source options 

according to user preference, was just recently identified (Watson et al., 2008). 

And to the best of our knowledge, this is the first study to empirically assess the 

impacts of this choice. Therefore, replications should be highly beneficial to the 

field of open source. 

 Moreover, studies aimed at understanding what exactly the categories 

utilized in this research (e.g., education and end-users) mean to members, users 

and the population in general – impacting their choices of which OS software to 

adopt and likelihood to participate and contribute to the projects – should be 

encouraged. This stream of research may clarify apparent contradictory findings 

such as the negative effect of a project being listed as end-user, and a positive 

one when listed as office, on its activeness. At first, it seems that software of the 

office kind aims at end-users as well. So, why aren‟t the effects the same? Are 

there sub-categories within the end-user category? Or perhaps office-software is 



117 
 

not really intended at end-users and has a distinct population of members. Future 

research can explain these issues based on members‟ perceptions. 

 Furthermore, we do not consider the issue of task complexity solved. 

Although we have not found it to moderate the relationships proposed, that does 

not mean that it does not have a direct effect on our endogenous variables. As a 

matter of fact, a direct impact of task complexity on software quality has been 

proposed and found significant in a recent study (Balijepally et al., 2009). A 

similar test could be made to assess the direct influence of task complexity on 

activeness and efficiency, for example. Additionally, we can not rule out the 

possibility that the projects we analyzed are not complex enough to make the 

effect identifiable statistically. Much work remains to be done in this area. 

 As a last topic on the content side, Agerfalk & Fitzgerald (2008) pointed 

out that the recruitment of members of an open source community by sponsors 

could erode the “unknown” aspect of the project, which in turn may affect trust 

levels and innovation rates. This proposition is closely related to the limitation of 

not accounting for the number of sponsored members in a project we pointed 

out, and thus reinforces the need to add this variable into future studies. 

On the method side, studies adopting a longitudinal approach would add 

to the robustness of the statistical analysis utilized in this study, presenting a 

more realistic test of the propositions and demonstrating how the constructs 

evolve in different types of projects over time.  A longitudinal approach could 

unfold a relationship between activeness and software quality, for example; 

where activeness peaks when software is at low-quality and decreases as 



118 
 

software quality increases. Additionally, although we could test variables‟ effects 

and the direction of them on the endogenous variables, we did not calculate their 

effect-sizes, taking into account coefficients and equations‟ R-squares. 

Accordingly, we do not know how relevant the effect of a specific project trait is 

on its activities. Future studies may address this topic. Finally, the SEM model 

developed in this research could be utilized as a baseline model for future 

studies. As such, tests of competing models against this one might be performed 

for improvements in how we see the relationships between variables and the 

achievement of more parsimonious models. All these possibilities remain open.  



119 
 

REFERENCES 
 
Agerfalk, P. J., & Fitzgerald, B. (2008). Outsourcing to an Unknown Workforce: 

Exploring Opensourcing as a Global Sourcing Strategy. MIS Quarterly, 32, 
385-409. 

 
Anderson, J. C., & Gerbing, D. W. (1998). Structural equation modeling in 

practice: A review and recommended two-step approach. Psychological 
Bulletin, 103, 411-423. 

 
Baldwin, Y., C., & Clark, K. B. (2003). Does Code Architecture Mitigate Free 

Riding in the Open Source Development Model? 
 
Balijepally, V., Mahapatra, R., Nerur, S., & Price, K. H. (2009). Are Two Heads 

Better than One for Software Development? The Productivity Paradox of Pair 
Programming. MIS Quarterly, 33(1), 91-118. 

 
Baum, J. A. C., & Oliver, C. (1991). Institutional Linkages and Organizational 

Mortality. Administrative Science Quarterly, 36(2), 187-218. 
 
Bentler, P. M. (1989). EQS structural equations program manual. Los Angeles, 

CA: BMDP Statistical Software Inc. 
 
Bessen, J. E. (2005). Open Source Software: Free Provision Of Complex Public 

Goods: SSRN: http://ssrn.com/abstract=588763 or DOI: 
10.2139/ssrn.588763. 

 
Byrne, B. M. (1994). Structural equation modeling with EQS and EQS/Window: 

Basic concepts, applications, and programming: Sage Publications. 
 
Cheung, M., Leung, K., & Au, K. (2006). Evaluating Multilevel Models in Cross-

Cultural Research. Journal of Cross-Cultural Psychology 37, no. 5. 
 
Chin, W. W. (1998). Issues and Opinion on Structural Equation Modeling. MIS 

Quarterly, 22(1). 
 
Cole, D. A., Ciesla, J. A., & Steiger, J. H. (2007). The Insidious Effects of Failing 

to Include Design-Driven Correlated Residuals in Latent-Variable Covariance 
Structure Analysis. Psychological methods. 12, no. 4. 

 
Coltman, T., Devinney, T. M., Midgley, D. F., & Venaik, S. (2008). Formative 

versus reflective measurement models: Two applications of formative 
measurement. Journal of Business Research, 61(12), 1250-1262. 

 

http://ssrn.com/abstract=588763


120 
 

Counsell, S., & Swift, S. (2006). The interpretation and utility of three cohesion 
metrics for object-oriented design. ACM Transactions on Software 
Engineering and Methodology, 15(2), 123-149. 

 
Crowston, K., Annabi, H., Howison, J., & Masango, C. (2004). Effective work 

practices for software engineering: Free/libre open source software 
development. Paper presented at the WISER Workshop on Interdisciplinary 
Software Engineering Research, SIGSOFT. 

 
Crowston, K., Annabi, H., Howison, J., & Masango, C. (2005). Towards a 

portfolio of FLOSS project success measures. Paper presented at the 26th 
International Conference on Software Engineering, Edinburgh, UK. 

 
Crowston, K., & Howison, J. (2006). Hierarchy and Centralization in Free and 

Open Source Software Team Communications. Knowledge, Technology, and 
Policy, 18(4), 65-85. 

 
Crowston, K., & Scozzi, B. (2002). Open Source Software Projects as Virtual 

Organizations: Competency Rallying for Software Development. IEEE 
Proceedings — Software Engineering, 149(1), 3-17. 

 
DeSouza, C. R. B., Redmiles, D., Cheng, L., Millen, D., & Patterson, J. (2004a). 

Sometimes You Need to See Through Walls — A Field Study of Application 
Programming Interfaces. Paper presented at the CSCW‟04, November 6–10. 

 
DeSouza, C. R. B., Redmiles, D., Cheng, L., Millen, D., & Patterson, J. (2004b). 

How a Good Software Practice Thwarts Collaboration – The multiple roles of 
APIs in Software Development. Paper presented at the SIGSOFT‟04/FSE-12, 
Oct.  31–Nov.  6. 

 
Dow, K. E., Jackson, C., Wong, J., & Leitch, R. A. (2008). A Comparison of 

Structural Equation Modeling Approaches: The Case of User Acceptance of 
Information Systems. Journal of Computer Information Systems, 48(4), 106-
114. 

 
Farhoomand, A. (2007). Opening up of the Software Industry: The Case of SAP. 

Paper presented at the Management of eBusiness, 2007. WCMeB 2007. 
Eighth World Congress on the. 

 
Fershtman, C., & Gandal, N. (2007). Open source software: Motivation and 

restrictive licensing. IEEP, 4, 209–225. 
 
Fitzgerald, B. (2006). The Transformation of Open Source Software. MIS 

Quarterly, 30(3), 587-598. 



121 
 

Fitzgerald, B., & Feller, J. (2002). A further investigation of open source software: 
community, co-ordination, code quality and security issues. Information 
Systems Journal, 12(1), 3-5. 

 
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). 

Multivariate Data Analysis (6th ed. ed.). Upper Saddle River, N.J.: Pearson 
Education Inc. 

 
Herbsleb, J., & Mockus, A. (2003). An Empirical Study of Speed and 

Communication in Globally Distributed Software Development. IEEE 
Transactions on Software Engineering, 29(6), 481-494. 

 
Hoyle, R. H. e. (1995). Structural Equation Modeling, Concepts, Issues, and 

Applications. Thousand Oaks, CA.: Sage Publications. 
 
Hunt, F., & Johnson, P. (2002). On the Pareto Distribution of Sourceforge 

Projects. Paper presented at the Proceedings of the Open Source Software 
Development Workshop Newcastle, UK. 

 
Jiang, Z., & Benbasat, I. (2007). The Effects of Presentation Formats and Task 

Complexity on Online Consumers' Product Understanding. MIS Quarterly, 
31(3), 475-500. 

 
Johnson, J. P. (2002). Open Source Software: Private Provision of a Public 

Good. Journal of Economics & Management Strategy, 11(4), 637-662. 
 
Joreskog, K. G., & Sorbom, D. (1993). Lisrel 8: Structured equation modeling 

with the Simplis command language. IL: Scientific Software International, Inc. 
 
Kelloway, E. K. (1998). Using Lisrel for Structural Equation Modeling. CA: 

International Educational and Professional Publisher, SAGE Publications. 
 
Kline, R. B. (1998). Principles and practice of structural equation modeling. New 

York: The Guilford Press. 
 
Koch, S. (2004). Profiling an Open Source Project Ecology and Its Programmers. 

Electronics Markets. Special Section: Open Source Software, 14(2). 
 
Koch, S., & Schneider, G. (2002). Effort, co-operation and co-ordination in an 

open source software project: GNOME. Information Systems Journal, 12(1), 
27-42. 

 
Krishnamurthy, S. (2002). Cave or Community? An Empirical Examination of 100 

Mature Open Source Projects [Electronic Version]. First Monday 
(http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/960/881
), 7. Retrieved 02/18/08. 

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/960/881)
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/960/881)


122 
 

Lerner, J., & Tirole, J. (2005). The scope of open source licensing. Journal of 
Law, Economics and Organization, 21, 20–56. 

 
Long, J. (2006). Understanding the Role of Core Developers in Open Source 

Software Development. Journal of Information, Information Technology, and 
Organizations, 1. 

 
Maitland, S. B., Dixon, R. A., Hultsch, D. F., & Hertzog, C. (2001). Well-Being as 

a Moving Target: Measurement Equivalence of the Bradburn Affect Balance 
Scale. J Gerontol B Psychol Sci Soc Sci, 56(2), P69-77. 

 
Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with 

applications. Biometrika, 57, 519-530. 
 
Mockus, A., Fielding, R. T., & Herbsleb, J. (2000). A case study of open source 

software development: the Apache server. Paper presented at the 
Proceedings of the 22nd International Conference on Software Engineering. 

 
Mockus, A., & Herbsleb, J. D. (2002). Why not improve coordination in distributed 

software development by stealing good ideas from open source? Paper 
presented at the ICSE „02 Workshop on Open Source Software Engineering. 

 
O'Mahony, S. (2007). The governance of open source initiatives: what does it 

mean to be community managed? Journal of Management & Governance, 
11, 139-150. 

 
Ping, R. (2008). Personal Communication by Email. In C. Santos (Ed.). 
 
Ping, R. A. (1996). Improving the Detection of Interactions in Selling and Sales 

Management Research. The Journal of personal selling & sales 
management. 16, no. 1. 

 
Qureshi, I., & Compeau, D. (2009). Assessing Between-Group Differences in 

Information Systems Research:  A Comparison of Covariance- and 
Component-Based SEM. MIS Quarterly, 33(1), 197-214. 

 
Raja, U., & Tretter, M. (2006). Investigating open source project success: A data 

mining approach to model formulation, validation and testing. Working Paper, 
Texas A&M University, College Station, Texas. 

 
Raymond, E. S. (1999). The Cathedral and the Bazaar: Musings on Linux and 

open source by an accidental revolutionary. Sebastopol, CA.: O'Reilly. 
 
Rigdon, E. (1996). Model Comparison in SEM [Electronic Version]. 

http://www2.gsu.edu/~mkteer/nested.html. 

http://www2.gsu.edu/~mkteer/nested.html


123 
 

Rutner, P. S., Hardgrave, B. C., & McKnight, D. H. (2008). Emotional Dissonance 
and the Information Technology Professional. MIS Quarterly, 32(3), 635-652. 

 
Santos Jr., C. (2008). Understanding Partnerships between Corporations and the 

Open Source Community: A Research Gap. IEEE Software, 25(6). 
 
Sauer, R. M. (2007). Why develop open-source software? The role of non-

pecuniary benefits, monetary rewards, and open-source licence type. Oxford 
Review of Economic Policy, 23(4), 605-619. 

 
Shaikh, M., & Cornford, T. (2003). Version management tools: CVS to BK in the 

Linux kernel [Electronic Version]. Working Paper. Retrieved May 6, 2006. 
 
Sharma, S., Sugumaran, V., & Rajagopalan, B. (2002). A framework for creating 

hybrid-open source software communities. Information Systems Journal, 
12(1), 7-25. 

 
Stamelos, I., Angelis, L., Oikonomou, A., & Bleris, G. L. (2002). Code quality 

analysis in open source software development. Information Systems Journal, 
12(1), 43-60. 

 
Steiger, J. H. (1990). Structural model evaluation and modification: An interval 

estimation approach. Multivariate Behavioral Research, 25, 173-180. 
 
Stewart, K., Ammeter, A., & Maruping, L. (2005). A preliminary analysis of the 

influences of  licensing and organizational sponsorship on success in open 
source projects. Paper presented at the Proceedings  of the 38 Hawaii 
International Conference on System Sciences. 

 
Stewart, K., & Gosain, S. (2006). The impact of ideology on effectiveness in open 

source software development teams. MIS Quarterly, 30(2), 291-314. 
 
Thomas, D., & Hunt, A. (2004). Open source ecosystems. IEEE Software, 32(1), 

89-91. 
 
von Hippel, E. (2005). Democratizing innovation. Boston, MA.: MIT Press. 
 
von Hippel, E., & von Krogh, G. (2003). open Source Software and the "Private-

Collective" Innovation Model: Issues for Organization Science. Organization 
Science, 14(2). 

 
von Krogh, G., Spaeth, S., & Lakhani, K. R. (2003). Community, Joining, and 

Specialization in Open  Source Software Innovation: A Case Study. Research 
policy, 32(7), 26. 



124 
 

Watson, R. T., Boudreau, M.-C., York, P. T., Greiner, M. E., & Wynn Jr., D. 
(2008). The Business of Open Source. Communications of the ACM, 51, 41-
46. 

 
Weiss, D., & Poland, P. (2006). Measuring success of open source projects 

using web search engines. 
 
West, J., & O‟Mahony, S. (2005). Contrasting Community Building in Sponsored 

and Community Founded Open Source Projects. Paper presented at the 
Proceedings of the 38th Annual Hawai International Conference on System 
Sciences. 

 
Xu, B., Qian, J., Zhang, X., Wu, Z., & Chen, L. (2005). A brief survey of program 

slicing. SIGSOFT Softw. Eng. Notes, 30(2), 1-36. 
 
Yuan, K.-H. (2005). Fit Indices Versus Test Statistics. Multivariate Behavioral 

Research, 40(1), 115-148.  



125 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
  

 



126 
 

APPENDIX A – SOURCEFORGE.NET PARTIAL E-R DIAGRAM 
 
Entity Relationship (ER) Diagram – Sourceforge.net Database at U. Notre Dame 

 

Source: https://zerlot.cse.nd.edu/mywiki/index.php?title=ER_diagrams

 

  

https://zerlot.cse.nd.edu/mywiki/index.php?title=ER_diagrams


127 
 

APPENDIX B – CAPTURING THE EFFECTS OF LICENSE TYPE 

 

To capture the effects license type through dummy variables, we first classified 

each license according to three dimensions: highly restrictive, restrictive, and 

unrestrictive; just as previous studies have done (Fershtman & Gandal, 2007; Lerner & 

Tirole, 2005). 

A highly restrictive license implies that the program cannot be compiled with 

proprietary programs, and a restrictive one implies that the source code from 

modifications to the program must be made available. When a license does not restrict 

the software in any of those two forms, it is said to be unrestrictive (Fershtman & 

Gandal, 2007; Lerner & Tirole, 2005). Additionally, it possible that one license has both 

restrictions. GPL is restrictive and highly restrictive in that software must make 

modifications available and not be compiled into proprietary programs. Finally, it is 

important to emphasize that there is no license classified solely as highly restrictive. 

Having classified the licenses, we coded each project according to the 

characteristic(s) of the license(s) attached to it. For that, we created 4 dummy variables, 

no_restriction, mod_restriction, both_restrictions, and dual_license. If at least one of the 

license(s) attached to a project imposed no restrictions whatsoever, that project scored 

one in no_restriction (and zero, otherwise). If at least one of a project‟s license(s) was 

restrictive, then such a project scored one in mod_restriction (short for restriction of 

modification). If at least one of a project‟s license(s) was restrictive and highly restrictive 

(GPL), such a project scored one in both_restrictions. Furthermore, if a project had 

scored one in no_restriction as well as in mod_restriction (or one in no_restriction as 

well as in both_restrictions), then such project scored one in dual_license44. Finally, 

when a license type was not found in the cases we used, it could not be classified and 

therefore was left out of our statistical analysis (see Table 6 for information on licenses‟ 

classifications).  

                                            

44
 To license software under two distinct licenses is becoming a common practice in going-open 

strategies. Such practice allows open source projects and software sales to coexist, creating a business 
based in open source initiatives (Watson, Boudreau, York, Greiner, & Wynn Jr, 2008). 



128 
 

APPENDIX C – COVARIANCE MATRICES (WITHOUT MODERATOR) 
 

Covariance Matrix (without moderator) – 2006 Sample (42 VARIABLES) 

                       LOGPAGEV   LOGDOWNL   LOGMEMBE   LOGACTIV   LOGEFFIC 

                          V1         V2         V3         V4         V5   

     LOGPAGEV V1         5.824 

     LOGDOWNL V2         3.831      4.831 

     LOGMEMBE V3          .576       .572       .573 

     LOGACTIV V4         2.107      2.199       .611      2.929 

     LOGEFFIC V5         2.060      2.136       .617      2.887      3.222 

     LOGLIKEL V6         -.110      -.116      -.017      -.163       .060 

     LOGAVERA V7          .976      1.082       .207       .930       .955 

     LOG_LIFE V8          .089       .262       .053       .120       .122 

     NO_RESTR V9          .000       .012       .020       .022       .022 

     MOD_REST V10         .001       .021       .017       .010       .012 

     BOTH_RES V11         .061       .076      -.018      -.002       .000 

     DUAL_LIC V12         .055       .085       .027       .035       .036 

     END_USER V13         .119       .193       .012       .073       .062 

     DEVELOPE V14         .031       .056       .040       .040       .048 

     SYSTEM_A V15         .037       .047      -.003       .025       .025 

     OTHERS_A V16         .002       .002       .010       .012       .013 

     ADVANCED V17         .007       .010       .004       .002       .005 

     COMMUNIC V18        -.010       .034       .000       .025       .020 

     DATABASE V19        -.018      -.016      -.002       .006       .009 

     DESKTOP  V20         .018       .035       .005       .009       .010 

     EDUCATIO V21        -.013      -.023       .002      -.002       .002 

     GAMES    V22        -.011       .000       .013      -.011      -.007 

     INTERNET V23         .031       .003      -.004       .017       .022 

     MULTIMED V24         .072       .082       .009       .008       .002 

     OFFICE   V25         .012       .012       .005       .026       .026 

     OTHER    V26        -.011      -.014      -.001      -.005      -.004 

     PRINTING V27         .008       .008      -.001       .003       .003 

     RELIGION V28        -.002      -.001       .000       .000       .000 

     SCIENTIF V29        -.028      -.045       .013      -.016      -.007 

     SECURITY V30         .013       .015       .000       .000       .000 

     SOCIOLOG V31        -.004      -.005       .001       .003       .003 

     SOFTWARE V32         .000       .006       .012       .028       .035 

     SYSTEM   V33         .073       .059       .008      -.002      -.011 

     TERMINAL V34         .001       .003      -.001       .000      -.001 

     TEXT_EDI V35         .008       .013      -.002       .011       .006 

     PLANNING V36        -.027      -.026       .005      -.010      -.012 

     PRE_ALPH V37        -.066      -.070       .003      -.045      -.044 

     ALPHA    V38        -.090      -.097      -.008      -.072      -.079 

       BETA   V39        -.012       .015      -.004       .015       .014 

     PRODUCTI V40         .268       .292       .038       .180       .198 

     MATURE   V41         .044       .050       .010       .031       .032 

     INACTIVE V42        -.018      -.012      -.002      -.005      -.004 

 

                       LOGLIKEL   LOGAVERA   LOG_LIFE   NO_RESTR   MOD_REST 

                          V6         V7         V8         V9         V10  

     LOGLIKEL V6          .185 

     LOGAVERA V7         -.063      3.532 

     LOG_LIFE V8         -.004       .167       .167 

     NO_RESTR V9          .001       .020       .013       .159 



129 
 

     MOD_REST V10         .001       .019       .009      -.025       .159 

     BOTH_RES V11         .000      -.002       .008      -.088      -.079 

     DUAL_LIC V12         .000       .038       .031       .031       .039 

     END_USER V13        -.010       .034       .020      -.020      -.034 

     DEVELOPE V14         .005       .061       .032       .031       .047 

     SYSTEM_A V15        -.001       .015       .015      -.001      -.014 

     OTHERS_A V16         .001      -.003       .007      -.002      -.002 

     ADVANCED V17         .003       .002       .003      -.001       .001 

     COMMUNIC V18        -.006       .005       .004      -.003      -.008 

     DATABASE V19         .002       .004       .002       .003       .004 

     DESKTOP  V20         .000       .009       .007      -.002       .002 

     EDUCATIO V21         .002      -.001      -.002      -.003      -.002 

     GAMES    V22         .004      -.019       .004      -.007      -.008 

     INTERNET V23         .006       .002       .001       .006      -.004 

     MULTIMED V24        -.005       .036       .009      -.005       .006 

     OFFICE   V25        -.001       .009       .000      -.002      -.001 

     OTHER    V26         .001       .004       .001      -.001      -.002 

     PRINTING V27         .000       .001       .000       .000       .000 

     RELIGION V28         .000       .003      -.001       .000      -.001 

     SCIENTIF V29         .004       .004      -.001       .002       .011 

     SECURITY V30        -.001       .002      -.002      -.002       .000 

     SOCIOLOG V31         .000       .000       .000       .001      -.001 

     SOFTWARE V32         .002       .014       .008       .026       .035 

     SYSTEM   V33        -.007       .019       .010       .002      -.003 

     TERMINAL V34         .000       .002       .000       .000       .000 

     TEXT_EDI V35        -.003       .009       .001       .002       .002 

     PLANNING V36         .000      -.003       .009       .003       .001 

     PRE_ALPH V37         .003      -.036       .006      -.001       .003 

     ALPHA    V38         .000      -.051      -.001       .003       .000 

       BETA   V39        -.004      -.011       .001      -.005       .004 

     PRODUCTI V40         .003       .126       .020       .006       .005 

     MATURE   V41         .000       .027       .007       .003       .001 

     INACTIVE V42         .000      -.009       .000       .000       .000 

 

                       BOTH_RES   DUAL_LIC   END_USER   DEVELOPE   SYSTEM_A 

                          V11        V12        V13        V14        V15  

     BOTH_RES V11         .230 

     DUAL_LIC V12         .022       .113 

     END_USER V13         .075       .005       .250 

     DEVELOPE V14        -.057       .022      -.062       .237 

     SYSTEM_A V15         .024       .005      -.010      -.005       .181 

     OTHERS_A V16         .011       .006       .004       .002       .005 

     ADVANCED V17         .004       .006       .002       .004       .005 

     COMMUNIC V18         .016       .002       .022      -.013       .020 

     DATABASE V19        -.004       .001      -.008       .011       .009 

     DESKTOP  V20         .004       .003       .015      -.004      -.005 

     EDUCATIO V21         .006       .000       .002      -.005      -.005 

     GAMES    V22         .016       .001       .031      -.013      -.017 

     INTERNET V23         .001       .003      -.010       .008       .041 

     MULTIMED V24         .011       .009       .027       .000      -.023 

     OFFICE   V25         .006       .001       .013      -.007      -.001 

     OTHER    V26         .003       .001       .006      -.001      -.001 

     PRINTING V27         .000       .000       .001      -.001       .000 

     RELIGION V28         .001       .000       .000      -.001       .000 

     SCIENTIF V29        -.007       .003      -.008       .007      -.021 

     SECURITY V30         .002       .000       .001      -.004       .014 

     SOCIOLOG V31         .000       .000       .002       .000      -.001 



130 
 

     SOFTWARE V32        -.053       .014      -.071       .087      -.020 

     SYSTEM   V33         .016       .010      -.006       .000       .057 

     TERMINAL V34         .000       .000       .001      -.001       .002 

     TEXT_EDI V35        -.003       .001       .001       .006      -.004 

     PLANNING V36         .005       .013       .008       .005       .000 

     PRE_ALPH V37         .007       .010       .009       .006      -.001 

     ALPHA    V38         .007       .010       .006       .007      -.008 

       BETA   V39         .019       .007       .015       .001       .004 

     PRODUCTI V40         .000       .006       .000       .011       .022 

     MATURE   V41        -.002       .004       .000       .005       .003 

     INACTIVE V42         .000      -.001       .000       .000      -.001 

 

                       OTHERS_A   ADVANCED   COMMUNIC   DATABASE   DESKTOP  

                          V16        V17        V18        V19        V20  

     OTHERS_A V16         .092 

     ADVANCED V17         .000       .031 

     COMMUNIC V18         .004       .003       .136 

     DATABASE V19         .000       .001      -.006       .075 

     DESKTOP  V20        -.001       .000      -.004       .000       .047 

     EDUCATIO V21         .004       .000      -.003       .000       .000 

     GAMES    V22         .006       .002      -.012      -.008      -.004 

     INTERNET V23         .010       .003       .007       .008      -.006 

     MULTIMED V24         .000       .002      -.011      -.006       .001 

     OFFICE   V25         .004       .000       .000       .004      -.002 

     OTHER    V26         .004       .000      -.003       .000       .000 

     PRINTING V27         .001       .000      -.001       .000       .001 

     RELIGION V28         .001       .000       .000       .000       .000 

     SCIENTIF V29         .002       .002      -.013       .000      -.001 

     SECURITY V30         .002       .001       .002      -.001      -.001 

     SOCIOLOG V31         .000       .000       .000       .000       .000 

     SOFTWARE V32        -.008       .000      -.025       .004      -.002 

     SYSTEM   V33        -.003       .003      -.006      -.004       .001 

     TERMINAL V34        -.001       .000       .001       .000       .000 

     TEXT_EDI V35         .001       .000      -.004      -.002       .001 

     PLANNING V36         .005       .004       .002       .000       .001 

     PRE_ALPH V37         .003       .003       .002       .001       .001 

     ALPHA    V38         .002       .002       .000       .001       .001 

       BETA   V39         .006       .001       .008      -.002       .000 

     PRODUCTI V40         .003       .001       .002       .007       .001 

     MATURE   V41         .003       .002       .000       .000       .000 

     INACTIVE V42        -.001      -.001       .001       .000       .000 

 

                       EDUCATIO   GAMES      INTERNET   MULTIMED   OFFICE   

                          V21        V22        V23        V24        V25  

     EDUCATIO V21         .035 

     GAMES    V22         .001       .111 

     INTERNET V23        -.003      -.018       .187 

     MULTIMED V24         .000       .000      -.013       .127 

     OFFICE   V25         .001      -.007       .003      -.006       .064 

     OTHER    V26         .002      -.001      -.001      -.001       .001 

     PRINTING V27         .000      -.001      -.001       .001       .002 

     RELIGION V28         .000      -.001       .000       .001       .000 

     SCIENTIF V29         .008      -.003      -.016       .006      -.001 

     SECURITY V30        -.001      -.004       .002      -.005      -.001 

     SOCIOLOG V31         .001       .000      -.001      -.001       .000 

     SOFTWARE V32        -.003      -.019      -.012      -.020      -.004 

     SYSTEM   V33        -.003      -.013      -.006      -.011      -.007 



131 
 

     TERMINAL V34         .000      -.001       .000      -.001       .000 

     TEXT_EDI V35         .002      -.004       .000      -.003       .001 

     PLANNING V36         .002       .006       .001       .003       .001 

     PRE_ALPH V37         .000       .012       .003       .001       .000 

     ALPHA    V38         .000       .013      -.007       .003      -.001 

       BETA   V39         .003      -.002      -.001       .004       .000 

     PRODUCTI V40        -.002      -.011       .016      -.003       .006 

     MATURE   V41         .001       .000       .002       .001      -.001 

     INACTIVE V42         .000       .000       .000       .000       .000 

 

                       OTHER      PRINTING   RELIGION   SCIENTIF   SECURITY 

                          V26        V27        V28        V29        V30  

     OTHER    V26         .028 

     PRINTING V27         .000       .008 

     RELIGION V28         .001       .000       .004 

     SCIENTIF V29        -.001      -.001       .000       .105 

     SECURITY V30         .000       .000       .000      -.002       .032 

     SOCIOLOG V31         .000       .000       .001       .001       .000 

     SOFTWARE V32        -.003      -.001      -.001      -.005      -.005 

     SYSTEM   V33        -.001      -.001       .000      -.008       .012 

     TERMINAL V34         .000       .000       .000      -.001       .001 

     TEXT_EDI V35         .001       .001       .000      -.001      -.001 

     PLANNING V36         .001       .000       .000       .001       .000 

     PRE_ALPH V37        -.001       .000       .000      -.002       .000 

     ALPHA    V38         .003       .000       .000       .003      -.001 

       BETA   V39        -.001       .001       .001       .005       .004 

     PRODUCTI V40         .001       .000       .000      -.002       .000 

     MATURE   V41         .000       .000       .000       .002       .000 

     INACTIVE V42         .000       .000       .000       .000       .000 

 

                       SOCIOLOG   SOFTWARE   SYSTEM     TERMINAL   TEXT_EDI 

                          V31        V32        V33        V34        V35  

     SOCIOLOG V31         .006 

     SOFTWARE V32        -.001       .184 

     SYSTEM   V33        -.001      -.008       .156 

     TERMINAL V34         .000      -.001       .001       .008 

     TEXT_EDI V35         .001       .008      -.005       .000       .043 

     PLANNING V36         .000       .003       .001       .000       .000 

     PRE_ALPH V37         .000       .000       .001       .000       .001 

     ALPHA    V38         .000       .000       .001      -.001       .001 

       BETA   V39        -.001      -.007       .006       .000       .000 

     PRODUCTI V40         .001       .011       .006       .001       .001 

     MATURE   V41         .000       .005       .001       .000       .001 

     INACTIVE V42         .000       .000      -.001       .000       .000 

 

                       PLANNING   PRE_ALPH   ALPHA        BETA     PRODUCTI 

                          V36        V37        V38        V39        V40  

     PLANNING V36         .048 

     PRE_ALPH V37         .008       .062 

     ALPHA    V38         .003      -.001       .142 

       BETA   V39        -.002      -.017      -.037       .236 

     PRODUCTI V40        -.010      -.019      -.062      -.090       .249 

     MATURE   V41         .000      -.001      -.006      -.010      -.006 

     INACTIVE V42         .000       .000      -.001      -.003      -.005 

 

                       MATURE     INACTIVE 

                          V41        V42  



132 
 

     MATURE   V41         .042 

     INACTIVE V42        -.001       .016 

 
Covariance Matrix (without moderator) – 2007 Sample (42 VARIABLES) 

                       LOGPAGEV   LOGDOWNL   LOGMEMBE   LOGACTIV   LOGEFFIC 

                          V1         V2         V3         V4         V5   

     LOGPAGEV V1         5.411 

     LOGDOWNL V2         3.656      4.534 

     LOGMEMBE V3          .549       .538       .563 

     LOGACTIV V4         2.120      2.189       .605      2.927 

     LOGEFFIC V5         2.079      2.130       .616      2.912      3.262 

     LOGLIKEL V6         -.107      -.113      -.011      -.146       .080 

     LOGAVERA V7         1.059      1.104       .211       .974      1.007 

     LOG_LIFE V8          .072       .151       .035       .081       .084 

     NO_RESTR V9         -.003       .005       .019       .024       .023 

     MOD_REST V10        -.001       .015       .012       .014       .015 

     BOTH_RES V11         .064       .076      -.002       .014       .019 

     DUAL_LIC V12         .026       .033       .018       .026       .024 

     END_USER V13         .123       .173       .012       .070       .063 

     DEVELOPE V14         .032       .046       .033       .040       .047 

     SYSTEM_A V15         .032       .035      -.007       .018       .017 

     OTHERS_A V16         .000      -.006       .009       .004       .006 

     ADVANCED V17         .007       .018       .007       .006       .011 

     COMMUNIC V18        -.004       .004       .005      -.001      -.002 

     DATABASE V19        -.022      -.019      -.005      -.008      -.009 

     DESKTOP  V20        -.001       .006       .002      -.002      -.002 

     EDUCATIO V21        -.012      -.013       .002       .001       .004 

     GAMES    V22        -.007       .000       .004      -.015      -.015 

     INTERNET V23         .008       .019       .003       .003       .004 

     MULTIMED V24        -.004       .001       .003      -.001      -.001 

     OFFICE   V25         .000       .004       .003       .011       .009 

     OTHER    V26        -.011      -.011      -.002      -.007      -.007 

     PRINTING V27         .008       .006       .000       .002       .002 

     RELIGION V28        -.001       .002       .001       .003       .003 

     SCIENTIF V29        -.003      -.007       .002       .000       .001 

     SECURITY V30         .009       .006      -.002       .003       .004 

     SOCIOLOG V31        -.005      -.005       .000      -.001      -.002 

     SOFTWARE V32         .002       .002       .000       .003       .002 

     SYSTEM   V33         .001       .000       .000      -.003      -.004 

     TERMINAL V34        -.001      -.001      -.001      -.002      -.002 

     TEXT_EDI V35         .005       .007       .000       .005       .004 

     PLANNING V36        -.013      -.001       .000      -.007      -.010 

     PRE_ALPH V37        -.043      -.052       .004      -.034      -.031 

     ALPHA    V38        -.078      -.077      -.001      -.068      -.073 

       BETA   V39        -.030      -.011      -.002       .006       .006 

     PRODUCTI V40         .251       .270       .034       .183       .200 

     MATURE   V41         .051       .060       .012       .039       .042 

     INACTIVE V42        -.020      -.014      -.003      -.007      -.009 

 

                       LOGLIKEL   LOGAVERA   LOG_LIFE   NO_RESTR   MOD_REST 

                          V6         V7         V8         V9         V10  

     LOGLIKEL V6          .197 

     LOGAVERA V7         -.053      3.613 

     LOG_LIFE V8          .000       .106       .096 

     NO_RESTR V9         -.001       .023       .016       .186 



133 
 

     MOD_REST V10         .001       .015       .010      -.021       .179 

     BOTH_RES V11         .002       .001       .016      -.069      -.064 

     DUAL_LIC V12        -.001       .013       .020       .099       .006 

     END_USER V13        -.003       .033       .022      -.013      -.027 

     DEVELOPE V14         .001       .056       .029       .030       .046 

     SYSTEM_A V15        -.002       .020       .015       .003      -.013 

     OTHERS_A V16         .003      -.013       .008       .004      -.001 

     ADVANCED V17         .005       .001       .009       .002       .007 

     COMMUNIC V18        -.001      -.002       .001       .003       .000 

     DATABASE V19        -.001      -.005       .001       .002       .003 

     DESKTOP  V20        -.001       .001       .002       .002       .003 

     EDUCATIO V21         .002       .005       .000      -.001      -.002 

     GAMES    V22         .000      -.004       .002      -.001       .001 

     INTERNET V23         .001       .006       .001       .002       .000 

     MULTIMED V24         .000       .001       .000       .000       .001 

     OFFICE   V25        -.002      -.001      -.001       .001       .000 

     OTHER    V26         .000       .006       .002      -.001      -.002 

     PRINTING V27         .000       .000       .000       .000       .001 

     RELIGION V28         .000       .004       .000      -.001      -.001 

     SCIENTIF V29         .000       .004       .002       .001       .001 

     SECURITY V30         .000       .000      -.001      -.001       .000 

     SOCIOLOG V31         .000       .002       .000       .001       .000 

     SOFTWARE V32        -.001       .005       .003       .013       .018 

     SYSTEM   V33         .000       .001       .001       .000       .000 

     TERMINAL V34         .000       .002       .000       .000       .000 

     TEXT_EDI V35        -.001       .002       .001       .001      -.001 

     PLANNING V36        -.002       .014       .020       .013       .007 

     PRE_ALPH V37         .005      -.034       .012       .004       .004 

     ALPHA    V38         .000      -.053       .005       .007       .002 

       BETA   V39        -.002      -.018       .006       .000       .008 

     PRODUCTI V40         .003       .143       .016       .007       .006 

     MATURE   V41         .003       .027       .006       .004       .002 

     INACTIVE V42        -.001      -.011       .000       .000      -.001 

 

                       BOTH_RES   DUAL_LIC   END_USER   DEVELOPE   SYSTEM_A 

                          V11        V12        V13        V14        V15  

     BOTH_RES V11         .206 

     DUAL_LIC V12         .013       .115 

     END_USER V13         .062       .006       .247 

     DEVELOPE V14        -.034       .019      -.047       .226 

     SYSTEM_A V15         .024       .008      -.009      -.003       .193 

     OTHERS_A V16         .012       .008       .004       .004       .004 

     ADVANCED V17         .009       .006       .007       .012       .010 

     COMMUNIC V18        -.002       .002       .000       .004       .000 

     DATABASE V19        -.001       .002      -.003       .005       .001 

     DESKTOP  V20         .000       .002       .008       .002       .000 

     EDUCATIO V21         .004       .001       .001      -.005      -.003 

     GAMES    V22         .002       .000       .006      -.001      -.005 

     INTERNET V23         .000       .000       .003       .001       .007 

     MULTIMED V24         .000       .000       .001       .002       .000 

     OFFICE   V25         .000       .001       .005      -.003       .000 

     OTHER    V26         .004       .001       .007      -.001      -.001 

     PRINTING V27         .001       .000       .001       .000       .000 

     RELIGION V28         .001       .000       .000      -.001      -.001 

     SCIENTIF V29         .001       .001      -.001       .001      -.004 

     SECURITY V30         .001      -.001      -.002      -.003       .013 

     SOCIOLOG V31        -.001       .000       .000       .000       .000 



134 
 

     SOFTWARE V32        -.025       .002      -.030       .040      -.012 

     SYSTEM   V33         .000       .000       .001       .000       .001 

     TERMINAL V34         .000       .000       .000       .000       .000 

     TEXT_EDI V35         .000       .001       .001       .002       .000 

     PLANNING V36         .012       .019       .016       .015       .001 

     PRE_ALPH V37         .009       .008       .010       .011       .006 

     ALPHA    V38         .009       .011       .008       .011      -.001 

       BETA   V39         .017       .010       .017       .003       .006 

     PRODUCTI V40         .003       .004       .003       .014       .018 

     MATURE   V41        -.001       .003      -.001       .005       .002 

     INACTIVE V42         .001       .001       .001      -.001       .000 

 

                       OTHERS_A   ADVANCED   COMMUNIC   DATABASE   DESKTOP  

                          V16        V17        V18        V19        V20  

     OTHERS_A V16         .108 

     ADVANCED V17         .001       .087 

     COMMUNIC V18         .002       .002       .038 

     DATABASE V19         .000       .002       .000       .041 

     DESKTOP  V20         .000       .001       .002       .001       .027 

     EDUCATIO V21         .004       .000       .000       .000       .000 

     GAMES    V22         .002       .000      -.001       .000       .000 

     INTERNET V23         .000       .002       .007       .001       .002 

     MULTIMED V24         .001       .000       .001       .000       .001 

     OFFICE   V25         .002       .002       .001       .002       .001 

     OTHER    V26         .005       .001       .000       .000       .001 

     PRINTING V27         .001       .000       .000       .000       .000 

     RELIGION V28         .000       .000       .000       .000       .000 

     SCIENTIF V29         .001       .001       .001       .001       .000 

     SECURITY V30         .001       .001       .000       .000       .000 

     SOCIOLOG V31         .001       .000       .000       .000       .000 

     SOFTWARE V32        -.004       .001       .001       .001       .002 

     SYSTEM   V33         .000       .001       .001       .000       .001 

     TERMINAL V34         .000       .000       .001       .000       .000 

     TEXT_EDI V35         .000       .000       .000       .000       .000 

     PLANNING V36         .011       .011       .002       .003       .002 

     PRE_ALPH V37         .004       .005      -.001       .001       .002 

     ALPHA    V38         .003       .008       .002       .001       .003 

       BETA   V39         .005       .005       .000       .002       .000 

     PRODUCTI V40         .003       .004       .001       .002       .000 

     MATURE   V41         .003       .001       .000      -.001       .000 

     INACTIVE V42         .000       .000       .000       .000       .000 

 

                       EDUCATIO   GAMES      INTERNET   MULTIMED   OFFICE   

                          V21        V22        V23        V24        V25  

     EDUCATIO V21         .031 

     GAMES    V22         .001       .045 

     INTERNET V23        -.001      -.001       .050 

     MULTIMED V24         .001       .001       .001       .008 

     OFFICE   V25         .001      -.001       .001       .001       .029 

     OTHER    V26         .001       .000      -.001       .000       .001 

     PRINTING V27         .000       .000       .000       .000       .001 

     RELIGION V28         .000       .000       .000       .000       .000 

     SCIENTIF V29         .003       .001      -.001       .000       .000 

     SECURITY V30        -.001      -.001       .002       .000       .000 

     SOCIOLOG V31         .001       .000       .000       .000       .000 

     SOFTWARE V32        -.001       .000       .001       .000       .000 

     SYSTEM   V33         .000       .000       .000       .000       .000 



135 
 

     TERMINAL V34         .000       .000       .001       .000       .000 

     TEXT_EDI V35         .000       .000       .000       .000       .001 

     PLANNING V36         .001       .003       .002       .000       .001 

     PRE_ALPH V37        -.001       .006       .000       .001       .000 

     ALPHA    V38         .000       .003       .000       .000       .001 

       BETA   V39         .002      -.001       .000       .000       .000 

     PRODUCTI V40         .000      -.002       .002       .000       .001 

     MATURE   V41         .000       .000       .000       .000      -.001 

     INACTIVE V42         .000       .001       .000       .000       .000 

 

                       OTHER      PRINTING   RELIGION   SCIENTIF   SECURITY 

                          V26        V27        V28        V29        V30  

     OTHER    V26         .031 

     PRINTING V27         .000       .009 

     RELIGION V28         .000       .000       .005 

     SCIENTIF V29         .001       .000       .000       .025 

     SECURITY V30         .000       .000       .000       .000       .027 

     SOCIOLOG V31         .000       .000       .000       .000       .000 

     SOFTWARE V32        -.001       .000       .000       .000      -.002 

     SYSTEM   V33         .001       .000       .000       .000       .001 

     TERMINAL V34         .000       .000       .000       .000       .000 

     TEXT_EDI V35         .000       .000       .000       .000       .000 

     PLANNING V36         .004       .001       .000       .000      -.001 

     PRE_ALPH V37         .000       .000       .000       .001       .001 

     ALPHA    V38         .002       .001       .000       .002       .000 

       BETA   V39        -.001       .001       .000       .000       .003 

     PRODUCTI V40         .001       .000       .000       .000       .000 

     MATURE   V41         .000       .001       .000       .000       .000 

     INACTIVE V42         .000       .000       .000       .000      -.001 

 

                       SOCIOLOG   SOFTWARE   SYSTEM     TERMINAL   TEXT_EDI 

                          V31        V32        V33        V34        V35  

     SOCIOLOG V31         .003 

     SOFTWARE V32         .000       .109 

     SYSTEM   V33         .000       .002       .010 

     TERMINAL V34         .000       .000       .000       .002 

     TEXT_EDI V35         .000       .002       .000       .000       .011 

     PLANNING V36         .000       .001       .000       .000       .000 

     PRE_ALPH V37         .000      -.002       .000       .000       .000 

     ALPHA    V38         .000       .002       .000       .000       .001 

       BETA   V39         .000      -.001       .001       .000      -.001 

     PRODUCTI V40         .000       .005       .001       .000       .001 

     MATURE   V41         .000       .001       .000       .000       .001 

     INACTIVE V42         .000       .000       .000       .000       .000 

 

                       PLANNING   PRE_ALPH   ALPHA        BETA     PRODUCTI 

                          V36        V37        V38        V39        V40  

     PLANNING V36         .119 

     PRE_ALPH V37         .001       .104 

     ALPHA    V38        -.002      -.006       .168 

       BETA   V39        -.008      -.016      -.036       .242 

     PRODUCTI V40        -.007      -.017      -.059      -.079       .250 

     MATURE   V41        -.002      -.002      -.006      -.011      -.004 

     INACTIVE V42         .000      -.001      -.001      -.004      -.007 

 

                       MATURE     INACTIVE 

                          V41        V42  



136 
 

     MATURE   V41         .047 

     INACTIVE V42        -.001       .023 

 

Covariance Matrix (without moderator) – 2008 Sample (42 VARIABLES) 

                       LOGPAGEV   LOGDOWNL   LOGMEMBE   LOGACTIV   LOGEFFIC 

                          V1         V2         V3         V4         V5   

     LOGPAGEV V1         5.393 

     LOGDOWNL V2         3.622      4.444 

     LOGMEMBE V3          .562       .545       .575 

     LOGACTIV V4         2.114      2.200       .617      2.934 

     LOGEFFIC V5         2.057      2.125       .632      2.929      3.326 

     LOGLIKEL V6         -.105      -.112      -.010      -.130       .096 

     LOGAVERA V7         1.080      1.118       .220       .988      1.056 

     LOG_LIFE V8          .065       .104       .026       .063       .067 

     NO_RESTR V9         -.003      -.006       .013       .016       .015 

     MOD_REST V10         .001       .012       .012       .011       .016 

     BOTH_RES V11         .036       .026      -.011      -.008      -.004 

     DUAL_LIC V12         .018       .007       .007       .011       .009 

     END_USER V13         .106       .138       .008       .060       .052 

     DEVELOPE V14         .013       .029       .031       .027       .031 

     SYSTEM_A V15         .028       .023      -.008       .014       .012 

     OTHERS_A V16         .004      -.010       .004       .001       .002 

     ADVANCED V17         .013       .015       .008       .007       .010 

     COMMUNIC V18        -.011      -.004       .002      -.003      -.004 

     DATABASE V19        -.021      -.020      -.005      -.010      -.011 

     DESKTOP  V20        -.001       .003       .000      -.003      -.003 

     EDUCATIO V21        -.013      -.016       .002      -.001       .002 

     GAMES    V22        -.008      -.002       .003      -.017      -.018 

     INTERNET V23         .011       .019       .004       .008       .009 

     MULTIMED V24        -.003       .000       .003      -.002      -.002 

     OFFICE   V25        -.001       .001       .001       .008       .007 

     OTHER    V26        -.016      -.018      -.003      -.009      -.008 

     PRINTING V27         .006       .003       .000       .002       .002 

     RELIGION V28        -.001       .002       .002       .003       .003 

     SCIENTIF V29        -.004      -.007       .003       .000       .001 

     SECURITY V30         .011       .008      -.001       .006       .007 

     SOCIOLOG V31        -.004      -.005       .000      -.001      -.002 

     SOFTWARE V32        -.004      -.003       .000       .004       .005 

     SYSTEM   V33         .002       .000       .000      -.004      -.005 

     TERMINAL V34        -.001      -.001      -.001      -.002      -.002 

     TEXT_EDI V35         .003       .005       .000       .005       .003 

     PLANNING V36        -.021      -.024      -.010      -.021      -.028 

     PRE_ALPH V37        -.040      -.058       .000      -.033      -.027 

     ALPHA    V38        -.080      -.092      -.006      -.073      -.078 

       BETA   V39        -.038      -.034      -.004      -.006      -.008 

     PRODUCTI V40         .233       .252       .032       .178       .195 

     MATURE   V41         .053       .060       .012       .039       .042 

     INACTIVE V42        -.024      -.022      -.005      -.014      -.016 

 

                       LOGLIKEL   LOGAVERA   LOG_LIFE   NO_RESTR   MOD_REST 

                          V6         V7         V8         V9         V10  

     LOGLIKEL V6          .181 

     LOGAVERA V7         -.032      3.717 

     LOG_LIFE V8          .001       .079       .063 



137 
 

     NO_RESTR V9         -.002       .005       .003       .204 

     MOD_REST V10         .003       .010       .002      -.023       .191 

     BOTH_RES V11         .000      -.006      -.001      -.061      -.053 

     DUAL_LIC V12        -.003      -.003       .002       .136       .001 

     END_USER V13        -.006       .029       .011      -.014      -.026 

     DEVELOPE V14         .001       .048       .012       .023       .041 

     SYSTEM_A V15        -.003       .016       .009      -.001      -.014 

     OTHERS_A V16         .001      -.019       .003       .004      -.003 

     ADVANCED V17         .004       .002      -.001       .002       .006 

     COMMUNIC V18        -.001      -.002      -.001       .004      -.001 

     DATABASE V19        -.001      -.003      -.001       .001       .003 

     DESKTOP  V20        -.001       .000       .001       .002       .003 

     EDUCATIO V21         .002      -.002      -.002      -.002      -.002 

     GAMES    V22        -.001      -.002       .000       .000       .001 

     INTERNET V23         .001       .005       .000       .002      -.001 

     MULTIMED V24         .000       .001       .000       .000       .000 

     OFFICE   V25        -.001       .001      -.002      -.001       .000 

     OTHER    V26         .000       .002       .000      -.002      -.002 

     PRINTING V27         .000       .001       .000       .000       .000 

     RELIGION V28         .000       .003       .000       .000      -.001 

     SCIENTIF V29         .000       .001       .001      -.001       .001 

     SECURITY V30         .000       .000      -.002      -.001       .000 

     SOCIOLOG V31        -.001       .001       .000       .001       .000 

     SOFTWARE V32         .000       .005       .001       .010       .018 

     SYSTEM   V33         .000       .001       .000       .000      -.001 

     TERMINAL V34         .000       .003       .000       .000       .000 

     TEXT_EDI V35        -.001       .000       .001       .001       .000 

     PLANNING V36        -.005      -.016      -.002       .012       .006 

     PRE_ALPH V37         .005      -.039       .002       .003       .005 

     ALPHA    V38         .002      -.058      -.004       .006       .000 

       BETA   V39        -.003      -.024       .000       .000       .010 

     PRODUCTI V40         .001       .148       .006       .006       .005 

     MATURE   V41         .001       .028       .004       .003       .001 

     INACTIVE V42         .000      -.018      -.001       .001      -.001 

 

                       BOTH_RES   DUAL_LIC   END_USER   DEVELOPE   SYSTEM_A 

                          V11        V12        V13        V14        V15  

     BOTH_RES V11         .180 

     DUAL_LIC V12         .011       .154 

     END_USER V13         .049       .002       .243 

     DEVELOPE V14        -.027       .015      -.045       .212 

     SYSTEM_A V15         .019       .003      -.010      -.006       .199 

     OTHERS_A V16         .008       .007       .001      -.001       .002 

     ADVANCED V17         .011       .006       .004       .011       .011 

     COMMUNIC V18        -.001       .003       .000       .003       .000 

     DATABASE V19         .001       .002      -.003       .005       .002 

     DESKTOP  V20         .000       .002       .007       .001       .000 

     EDUCATIO V21         .005      -.001       .000      -.004      -.003 

     GAMES    V22         .003       .001       .007      -.001      -.005 

     INTERNET V23         .000       .000       .002       .000       .006 

     MULTIMED V24         .000       .001       .001       .002      -.001 

     OFFICE   V25         .001       .001       .004      -.002       .000 

     OTHER    V26         .003      -.001       .008      -.001      -.001 

     PRINTING V27         .001       .001       .000       .000       .000 

     RELIGION V28         .001       .000       .000      -.001      -.001 

     SCIENTIF V29         .001       .000       .000       .001      -.004 

     SECURITY V30         .002       .000      -.001      -.003       .014 



138 
 

     SOCIOLOG V31         .000       .000       .000       .000       .000 

     SOFTWARE V32        -.018       .004      -.028       .036      -.012 

     SYSTEM   V33         .000       .000       .001       .000       .001 

     TERMINAL V34         .000       .000       .000       .000       .000 

     TEXT_EDI V35         .000       .000       .001       .002       .000 

     PLANNING V36         .012       .019       .016       .009      -.006 

     PRE_ALPH V37         .009       .008       .008       .014       .005 

     ALPHA    V38         .009       .010       .007       .010       .000 

       BETA   V39         .014       .010       .018      -.002       .006 

     PRODUCTI V40         .004       .005      -.004       .010       .019 

     MATURE   V41        -.001       .001       .000       .005       .002 

     INACTIVE V42         .001       .002       .000      -.001       .001 

 

                       OTHERS_A   ADVANCED   COMMUNIC   DATABASE   DESKTOP  

                          V16        V17        V18        V19        V20  

     OTHERS_A V16         .117 

     ADVANCED V17        -.001       .115 

     COMMUNIC V18         .001       .002       .045 

     DATABASE V19         .000       .001       .000       .047 

     DESKTOP  V20         .001       .002       .002       .001       .029 

     EDUCATIO V21         .003       .000      -.001       .000       .000 

     GAMES    V22         .002      -.001       .000      -.001      -.001 

     INTERNET V23         .001       .003       .008       .001       .002 

     MULTIMED V24         .001       .000       .001       .000       .001 

     OFFICE   V25         .002       .003       .002       .002       .001 

     OTHER    V26         .005       .000       .000       .001       .001 

     PRINTING V27         .001       .000       .000       .000       .000 

     RELIGION V28         .000       .000       .000       .000       .000 

     SCIENTIF V29         .000       .001       .000       .001       .000 

     SECURITY V30         .002       .001       .000       .000      -.001 

     SOCIOLOG V31         .001       .000       .000       .000       .000 

     SOFTWARE V32        -.003       .002       .001       .002       .002 

     SYSTEM   V33         .000       .001       .001       .000       .001 

     TERMINAL V34         .000       .000       .001       .000       .001 

     TEXT_EDI V35         .000       .001       .000       .000       .000 

     PLANNING V36         .010       .008       .004       .003       .001 

     PRE_ALPH V37         .002       .004       .000       .001       .002 

     ALPHA    V38         .002       .009       .003       .002       .003 

       BETA   V39         .005       .007       .000       .003      -.001 

     PRODUCTI V40         .002       .003       .000       .001       .000 

     MATURE   V41         .002       .002       .000      -.001      -.001 

     INACTIVE V42        -.001       .001       .000       .000       .000 

 

                       EDUCATIO   GAMES      INTERNET   MULTIMED   OFFICE   

                          V21        V22        V23        V24        V25  

     EDUCATIO V21         .037 

     GAMES    V22         .001       .052 

     INTERNET V23        -.001      -.001       .055 

     MULTIMED V24         .000       .001       .002       .011 

     OFFICE   V25         .001      -.002       .001       .001       .031 

     OTHER    V26         .001       .000      -.001       .000       .001 

     PRINTING V27         .000      -.001       .000       .000       .001 

     RELIGION V28         .000       .000       .000       .000       .000 

     SCIENTIF V29         .003       .001      -.001       .000       .000 

     SECURITY V30        -.001      -.001       .003       .000       .001 

     SOCIOLOG V31         .001       .000       .000       .000       .000 

     SOFTWARE V32        -.002       .000       .001       .000       .001 



139 
 

     SYSTEM   V33         .000       .000       .000       .000       .000 

     TERMINAL V34         .000       .000       .001       .000       .000 

     TEXT_EDI V35         .000       .000       .000       .000       .001 

     PLANNING V36         .003       .004       .004       .001       .003 

     PRE_ALPH V37         .000       .006       .000       .001      -.001 

     ALPHA    V38        -.001       .004       .000       .000       .001 

       BETA   V39         .001      -.001       .000       .000       .000 

     PRODUCTI V40         .001      -.004       .002       .000       .001 

     MATURE   V41        -.001      -.001       .000       .000      -.001 

     INACTIVE V42         .000       .001       .000       .000       .000 

 

                       OTHER      PRINTING   RELIGION   SCIENTIF   SECURITY 

                          V26        V27        V28        V29        V30  

     OTHER    V26         .035 

     PRINTING V27         .000       .010 

     RELIGION V28         .000       .000       .005 

     SCIENTIF V29         .001       .000       .000       .027 

     SECURITY V30         .001       .000       .000      -.001       .030 

     SOCIOLOG V31         .000       .000       .000       .000       .000 

     SOFTWARE V32        -.001       .000       .000       .000      -.002 

     SYSTEM   V33         .001       .000       .000       .000       .001 

     TERMINAL V34         .000       .000       .000       .000       .000 

     TEXT_EDI V35         .000       .000       .000       .000       .000 

     PLANNING V36         .004       .001       .000       .000      -.001 

     PRE_ALPH V37        -.001       .000       .000       .001       .002 

     ALPHA    V38         .003       .000       .000       .002      -.001 

       BETA   V39         .000       .000       .000       .000       .002 

     PRODUCTI V40         .001       .000       .001       .000       .001 

     MATURE   V41         .000       .001       .000       .000       .000 

     INACTIVE V42        -.001       .000       .000       .000      -.001 

                       SOCIOLOG   SOFTWARE   SYSTEM     TERMINAL   TEXT_EDI 

                          V31        V32        V33        V34        V35  

     SOCIOLOG V31         .004 

     SOFTWARE V32         .000       .113 

     SYSTEM   V33         .000       .001       .011 

     TERMINAL V34         .000       .000       .000       .003 

     TEXT_EDI V35         .000       .001       .001       .000       .012 

     PLANNING V36         .001       .002       .000       .000       .001 

     PRE_ALPH V37         .000      -.001       .000       .000       .000 

     ALPHA    V38         .000       .002       .000       .000       .000 

       BETA   V39         .000      -.001       .000       .000       .000 

     PRODUCTI V40         .000       .007       .001       .000       .001 

     MATURE   V41         .000       .001       .000       .000       .001 

     INACTIVE V42         .000       .000       .000       .000       .000 

                       PLANNING   PRE_ALPH   ALPHA        BETA     PRODUCTI 

                          V36        V37        V38        V39        V40  

     PLANNING V36         .166 

     PRE_ALPH V37        -.004       .126 

     ALPHA    V38        -.010      -.011       .182 

       BETA   V39        -.017      -.018      -.033       .245 

     PRODUCTI V40        -.015      -.017      -.056      -.072       .249 

     MATURE   V41        -.003      -.002      -.007      -.010      -.004 

     INACTIVE V42        -.001      -.001      -.002      -.006      -.009 

                       MATURE     INACTIVE 

                          V41        V42  

     MATURE   V41         .049 

     INACTIVE V42        -.001       .032 



140 
 

APPENDIX D – COVARIANCE MATRICES (MODERATION TEST) 

Covariance Matrix (moderator) – 2006 Sample Low-Complexity 

                       LOGPAGEV   LOGDOWNL   LOGMEMBE   LOGACTIV   LOGEFFIC 

                         V  1       V  2       V  3       V  4       V  5 

     LOGPAGEV V  1       6.356 

     LOGDOWNL V  2       4.024      5.112 

     LOGMEMBE V  3        .731       .691       .628 

     LOGACTIV V  4       2.560      2.586       .713      3.266 

     LOGEFFIC V  5       2.575      2.610       .727      3.321      3.716 

     LOGLIKEL V  6       -.081      -.073      -.014      -.105       .094 

     LOGAVERA V  7       1.139      1.255       .247      1.169      1.213 

 

                       LOGLIKEL   LOGAVERA 

                         V  6       V  7 

     LOGLIKEL V  6        .167 

     LOGAVERA V  7       -.036      3.483 

 

Covariance Matrix (moderator) – 2006 Sample High-Complexity 

                       LOGPAGEV   LOGDOWNL   LOGMEMBE   LOGACTIV   LOGEFFIC 

                         V  1       V  2       V  3       V  4       V  5 

     LOGPAGEV V  1       7.388 

     LOGDOWNL V  2       4.532      6.165 

     LOGMEMBE V  3        .695       .851       .735 

     LOGACTIV V  4       2.462      2.965       .614      3.312 

     LOGEFFIC V  5       2.459      3.082       .640      3.422      3.790 

     LOGLIKEL V  6       -.037      -.001       .005      -.013       .144 

     LOGAVERA V  7       1.360      1.406       .360      1.050      1.140 

 

                       LOGLIKEL   LOGAVERA 

                         V  6       V  7 

     LOGLIKEL V  6        .133 

     LOGAVERA V  7        .027      3.232 

 

Covariance Matrix (moderator) – 2007 Sample Low-Complexity 

                       LOGPAGEV   LOGDOWNL   LOGMEMBE   LOGACTIV   LOGEFFIC 

                         V  1       V  2       V  3       V  4       V  5 

     LOGPAGEV V  1       5.781 

     LOGDOWNL V  2       3.779      4.717 

     LOGMEMBE V  3        .711       .665       .626 

     LOGACTIV V  4       2.528      2.480       .704      3.286 

     LOGEFFIC V  5       2.510      2.480       .724      3.334      3.672 

     LOGLIKEL V  6       -.095      -.082      -.008      -.107       .090 

     LOGAVERA V  7       1.154      1.245       .255      1.218      1.275 

 

                       LOGLIKEL   LOGAVERA 

                         V  6       V  7 

     LOGLIKEL V  6        .184 

     LOGAVERA V  7       -.032      3.711 



141 
 

Covariance Matrix (moderator) – 2007 Sample High-Complexity 

                       LOGPAGEV   LOGDOWNL   LOGMEMBE   LOGACTIV   LOGEFFIC 

                         V  1       V  2       V  3       V  4       V  5 

     LOGPAGEV V  1       6.722 

     LOGDOWNL V  2       4.507      6.344 

     LOGMEMBE V  3        .612       .832       .687 

     LOGACTIV V  4       2.289      3.064       .631      3.442 

     LOGEFFIC V  5       2.264      3.100       .687      3.608      4.017 

     LOGLIKEL V  6       -.082      -.068       .038       .010       .185 

     LOGAVERA V  7       1.430      1.586       .374       .995      1.139 

 

                       LOGLIKEL   LOGAVERA 

                         V  6       V  7 

     LOGLIKEL V  6        .167 

     LOGAVERA V  7        .050      3.071 

Covariance Matrix (moderator) – 2008 Sample Low-Complexity 

                       LOGPAGEV   LOGDOWNL   LOGMEMBE   LOGACTIV   LOGEFFIC 

                         V  1       V  2       V  3       V  4       V  5 

     LOGPAGEV V  1       5.750 

     LOGDOWNL V  2       3.701      4.571 

     LOGMEMBE V  3        .732       .665       .642 

     LOGACTIV V  4       2.514      2.509       .732      3.362 

     LOGEFFIC V  5       2.504      2.506       .760      3.408      3.770 

     LOGLIKEL V  6       -.102      -.091      -.005      -.113       .083 

     LOGAVERA V  7       1.161      1.242       .280      1.256      1.317 

 

                       LOGLIKEL   LOGAVERA 

                         V  6       V  7 

     LOGLIKEL V  6        .169 

     LOGAVERA V  7       -.031      3.710 

Covariance Matrix (moderator) – 2008 Sample High-Complexity 

                       LOGPAGEV   LOGDOWNL   LOGMEMBE   LOGACTIV   LOGEFFIC 

                         V  1       V  2       V  3       V  4       V  5 

     LOGPAGEV V  1       6.643 

     LOGDOWNL V  2       4.551      6.280 

     LOGMEMBE V  3        .630       .819       .688 

     LOGACTIV V  4       2.317      3.028       .619      3.233 

     LOGEFFIC V  5       2.225      3.006       .661      3.417      3.869 

     LOGLIKEL V  6       -.143      -.099       .021       .017       .193 

     LOGAVERA V  7       1.450      1.561       .368      1.035      1.208 

 

                       LOGLIKEL   LOGAVERA 

                         V  6       V  7 

     LOGLIKEL V  6        .149 

     LOGAVERA V  7        .069      3.260 

  



142 
 

APPENDIX E – MODERATION CONSTRAINTS (LAGRANGE TEST) 
 

UNIVARIATE TEST STATISTICS: 

--------------------------- 

   NO    CONSTRAINT    CHI-SQUARE   PROBABILITY   

   --    -----------   ----------   -----------   

    1    CONSTR:   1         .078        .780 

    2    CONSTR:   2         .034        .853 

    3    CONSTR:   3         .064        .801 

    4    CONSTR:   4         .116        .733 

    5    CONSTR:   5         .429        .513 

    6    CONSTR:   6         .098        .755 

    7    CONSTR:   7         .037        .848 

    8    CONSTR:   8         .070        .791 

    9    CONSTR:   9         .210        .647 

   10    CONSTR:  10         .489        .485 

   11    CONSTR:  11        1.191        .275 

   12    CONSTR:  12         .001        .977 

   13    CONSTR:  13         .146        .703 

   14    CONSTR:  14         .552        .457 

   15    CONSTR:  15         .244        .621 

   16    CONSTR:  16         .005        .944 

   17    CONSTR:  17         .007        .932 

   18    CONSTR:  18         .430        .512 

   19    CONSTR:  19         .000        .988 

   20    CONSTR:  20         .446        .504 

 

 

CUMULATIVE MULTIVARIATE STATISTICS                    UNIVARIATE INCREMENT 

----------------------------------                    -------------------- 

 

STEP  PARAMETER   CHI-SQUARE  D.F.  PROBABILITY       CHI-SQUARE  PROBABILITY  

---- -----------  ----------  ----  -----------       ----------  ----------- 

 

 1  CONSTR:  11      1.191      1       .275             1.191        .275 

 2  CONSTR:   1      2.815      2       .245             1.624        .203 

 3  CONSTR:  10      3.351      3       .341              .536        .464 

 4  CONSTR:  18      3.789      4       .435              .438        .508 

 5  CONSTR:  20      4.185      5       .523              .396        .529 

 6  CONSTR:  13      4.392      6       .624              .207        .649 

 7  CONSTR:   7      4.647      7       .703              .255        .613 

 8  CONSTR:   8      4.706      8       .788              .059        .808 

 9  CONSTR:  19      4.754      9       .855              .048        .826 

10  CONSTR:  17      4.796     10       .904              .041        .839 

11  CONSTR:  16      4.851     11       .938              .055        .815 

12  CONSTR:  14      4.889     12       .962              .038        .845 

13  CONSTR:   4      5.186     13       .971              .297        .586 

14  CONSTR:   9      5.511     14       .977              .325        .569 

15  CONSTR:  12      5.576     15       .986              .066        .798 

16  CONSTR:  15      5.635     16       .992              .059        .808 

17  CONSTR:   2      5.683     17       .995              .047        .828 

18  CONSTR:   3      5.727     18       .997              .045        .833 

19  CONSTR:   6      5.743     19       .998              .015        .902 

20  CONSTR:   5      5.743     20       .999              .000        .989 

 



143 
 

VITA 
 

Graduate School 
Southern Illinois University 

 
 

Carlos D. Santos Jr.      Date of Birth: May 22, 1981 
 
1925 Evergreen Terrace Dr. E – Ap. 8, Carbondale, Illinois  62901 
 
 
carlosdenner@gmail.com 
 
State University of Minas Gerais at Montes Claros (UNIMONTES) 
Bachelor of Science, Business and Administration, Dec 2002 
 
Federal University of Minas Gerais (UFMG) 
Master of Science in Business Administration, Strategic Management, Feb 2005 
 
Dissertation Title: 

A Total Cost of Ownership (TCO) Comparative Analysis between Linux and 
Windows. [available in Portuguese] 

 
Major Professor:  Márcio A. Gonçalves, Ph.D. 

mailto:carlosdenner@gmail.com

	Southern Illinois University Carbondale
	OpenSIUC
	8-7-2009

	OPEN SOURCE SOFTWARE PROJECTS' ATTRACTIVENESS, ACTIVENESS, AND EFFICIENCY AS A PATH TO SOFTWARE QUALITY: AN EMPIRICAL EVALUATION OF THEIR RELATIONSHIPS AND CAUSES
	Carlos D. Santos Jr.
	Recommended Citation


	CHAPTER 1 – INTRODUCTION
	CHAPTER 2 – LITERATURE REVIEW AND MODEL DEVELOPMENT
	/
	The following section describes, one-by-one, the exogenous variables (project’s characteristics) proposed to influence directly each of the identified endogenous constructs. The section finishes with a revision of the first four propositions to accou...

	CHAPTER 3 – METHODS
	Type of Project
	Development Status
	Task Complexity
	As project complexity appears in the model as a moderator, to facilitate the statistical analysis, we will classify our sample projects into categories to represent their complexity, based on its overall project complexity index. Accordingly, we will...
	Although we found prior studies dealing with task complexity, we had to create our own grouping method due to the lack of previous literature aiming at defining what correspondence should be used between the number of other tasks a task is dependent ...
	Control Variable (Project Life-span)
	Statistical Analysis and Empirical Evaluation of the Propositions

	CHAPTER 4 – Data DESCRIPTION and statistical results
	Chapter 5 – conclusions, discussions and final remarks
	REFERENCES
	Appendix A – Sourceforge.net Partial E-R Diagram
	Appendix B – Capturing the effects of License type
	Appendix C – Covariance Matrices (Without Moderator)
	Appendix D – Covariance Matrices (moderation test)
	Appendix E – Moderation Constraints (Lagrange Test)
	VITA

