
Southern Illinois University Carbondale
OpenSIUC

Publications Department of Computer Science

4-2010

System Design and Algorithmic Development for
Computational Steering in Distributed
Environments
Qishi Wu
University of Memphis

Mengxia Zhu
Southern Illinois University Carbondale, mzhu@cs.siu.edu

Yi Gu
University of Memphis

Nageswara S.V. Rao
Oak Ridge National Laboratory

Follow this and additional works at: http://opensiuc.lib.siu.edu/cs_pubs
Published in Wu, Q., & Zhu, M.,, Gu, Y., & Rao, N. S. V. (2010). System Design and Algorithmic
Development for Computational Steering in Distributed Environments. IEEE Transactions on
Parallel and Distributed Systems, 21(4). doi: 10.1109/TPDS.2009.81 ©2010 IEEE. Personal use of
this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in other works must be obtained from the
IEEE. This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and constraints invoked by each
author's copyright. In most cases, these works may not be reposted without the explicit permission
of the copyright holder.

This Article is brought to you for free and open access by the Department of Computer Science at OpenSIUC. It has been accepted for inclusion in
Publications by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Wu, Qishi, Zhu, Mengxia, Gu, Yi and Rao, Nageswara S. "System Design and Algorithmic Development for Computational Steering in
Distributed Environments." (Apr 2010).

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


System Design and Algorithmic Development
for Computational Steering in

Distributed Environments
Qishi Wu, Member, IEEE, Mengxia Zhu, Member, IEEE, Yi Gu, Student Member, IEEE, and

Nageswara S.V. Rao, Fellow, IEEE

Abstract—Supporting visualization pipelines over wide-area networks is critical to enabling large-scale scientific applications that

require visual feedback to interactively steer online computations. We propose a remote computational steering system that employs

analytical models to estimate the cost of computing and communication components and optimizes the overall system performance in

distributed environments with heterogeneous resources. We formulate and categorize the visualization pipeline configuration problems

for maximum frame rate into three classes according to the constraints on node reuse or resource sharing, namely no, contiguous, and

arbitrary reuse. We prove all three problems to be NP-complete and present heuristic approaches based on a dynamic programming

strategy. The superior performance of the proposed solution is demonstrated with extensive simulation results in comparison with

existing algorithms and is further evidenced by experimental results collected on a prototype implementation deployed over the Internet.

Index Terms—Distributed computing, computational steering, remote visualization, performance modeling.

Ç

1 INTRODUCTION

LARGE-SCALE computations enabled by the advances in
high-performance computing technologies have led to

new insights and discoveries in several scientific disci-
plines. Many computations involve continuous simulations
that span a number of time steps, each generating megabyte
to gigabyte data sets, resulting in a total data size of
terabytes to petabytes. These data sets must be stored,
transferred, visualized, and analyzed by geographically
distributed teams of scientists. Large-scale computations
are typically scheduled in a “batch mode” on super-
computers and their outputs are examined at the end using
visualization and other analysis tools. While being effective
in some cases, this paradigm potentially leads to runaway
computations whose parameters either strayed away from
the region of interest or did not show adequate movements
in a meaningful direction. Such instances represent very
ineffective utilization of valuable computing and human
resources. They can be avoided if the progress of computa-
tions is monitored through visual feedback, even in a
restricted sense, and the parameters are dynamically
steered during the execution.

A visualization process generally consists of a number of
steps or modules, which form a so-called visualization

pipeline, and a remote visualization system needs to
support the pipeline specific to the selected visualization
technique over wide-area networks (WAN). Visualization
modules, data objects, and network nodes and links have
their own distinct characteristics: visualization modules are
of different computing complexities; data objects trans-
mitted between modules are of different sizes; network
nodes have different processing power; and transport links
have different bandwidths and end-to-end delays. The
performance of such a system critically depends on how
efficiently the visualization pipeline is realized, that is,
partitioned and mapped onto network nodes. Most existing
visualization systems do not support flexible and adaptive
pipeline decomposition and network mapping. Oftentimes,
they employ a fixed partition/mapping scheme: in a
conventional client/server mode, the server typically per-
forms filtering and geometry extraction, and the client
performs rendering and display. Such fixed schemes do not
always render optimal performance when running on
WAN connections. For example, the geometric data size
could be significantly larger than the original data volume if
the data objects have very complex structures as in the case
of the core collapse in the Terascale Supernova Initiative
(TSI) simulation [1]; while the opposite is true if the data
objects are of regular shapes with smooth surfaces at the
initial stage of the TSI simulation. Therefore, an improper
partition and mapping scheme may result in prohibitively
expensive data transfer between the server and the client.

We propose Remote Intelligent Computational Steering
using Ajax (RICSA) for online visualization and steering
that optimizes the end-to-end performance of visualization
pipelines over wide-area networks to ensure a smooth data
flow. RICSA features a Web-based user interface via
Asychronous JavaScript using XML (Ajax) technology to
provide convenient and wide user access. This paper
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focuses on both algorithmic development for performance
modeling and optimization and system design for practical
implementation and deployment. Based on the analytical
cost models for visualization modules, computing nodes,
and transport links, we formulate pipeline mapping for
Maximum Frame Rate (MFR) in distributed environments as
optimization problems and categorize them into three
classes based on the constraints on node reuse or resource
sharing: 1) MFR with No Node Reuse or Sharing (MFR-
NNRS), 2) MFR with Contiguous Node Reuse and Sharing
(MFR-CNRS), where multiple contiguous modules along
the pipeline may be executed on one node, and 3) MFR with
Arbitrary Node Reuse and Sharing (MFR-ANRS), which
imposes no restriction on node reuse. We prove these three
problems to be NP-complete and propose a set of dynamic-
programming (DP)-based heuristic solutions, named Effi-
cient Linear Pipeline Configuration (ELPC) algorithms. For
comparison purposes, the Streamline [14] algorithm adapted
to linearly pipelined workflows and a Greedy algorithm are
also implemented and tested in the same simulated net-
works. The Streamline algorithm is mainly designed to
allocate computation and communication resources to
various stages of a computing workflow with different
requirements in grid environments. The simulation results
illustrate the efficacy of the ELPC algorithms in comparison
with Streamline and Greedy algorithms. The performance
superiority of the proposed system is further evidenced by
the experimental results collected on a prototype imple-
mentation of the RICSA system deployed over the Internet.

The rest of the paper is organized as follows: In Section 2,
we describe existing efforts related to our work. Section 3
presents the system architecture and Section 4 describes a
transport method that achieves stable and smooth data
flows for control channels. In Section 5, we construct cost
models for pipeline and network components, define an
objective function to maximize the frame rate, and discuss
various performance measurement techniques. In Section 6,
we categorize the pipeline mapping problems into three
classes and prove their NP-completeness. We design
heuristic mapping approaches in Section 7. Simulation-
based performance evaluations are conducted in Section 8
and implementation details as well as experimental results
are provided in Section 9. We conclude our work and
discuss future research in Section 10.

2 RELATED WORK

Many commercial or noncommercial software products for
remote visualization [2], [3], [4] employ a predetermined
partition of visualization pipelines and send fixed-type data
streams such as raw data, geometric primitives, or frame
buffer to remote client nodes. While such schemes are
common, they are not always optimal for high-performance
visualizations, particularly over wide-area connections.
There have been several efforts aimed at designing archi-
tectures that assign visualization modules across network
nodes more efficiently. Brodlie et al. [18] extended existing
dataflow visualization systems to Grid environments.
Stegmaier et al. [28] provided a generic solution for
hardware-accelerated remote visualization that is indepen-
dent of application and architecture. Bethel et al. [16]

designed a new architecture that utilizes high-speed WANs
and network data caches for data staging and transmission.
Luke and Hansen [23] presented a flexible remote visualiza-
tion framework capable of multiple partition scenarios and
tested it on a local network. Bowman et al. [17] proposed a
framework to predict the processing time of visualization
modules using analytic models, which can be used to obtain
a suitable mapping of visualization pipelines.

Closely related to our pipeline mapping problems is the
work in [15], where Benoit and Robert presented the
mapping of computing pipelines onto different types of
fully connected networks with identical processors and
links, with identical links but different processors, or with
different processors and links. They discussed three
versions of pipeline mapping problems, i.e., one-to-one,
interval, and general mappings, all of which are NP-
complete in fully heterogeneous platforms. The problem
that maps each task onto one node in a serial manner is
similar to MFR-NNRS in [29]. However, our work differs
from theirs mainly in the fact that the network we consider
features an arbitrary topology with an arbitrary number of
heterogeneous computing nodes and transport links.

There have been several research efforts on the design
and implementation of computational steering systems.
Existing systems such as SCIRun [25], CUMULVS [5],
VIPER [24], and RealityGrid [6] generally require a high
learning curve for end users. Besides, various packages
such as Globus, SOAP, PVM [7], and AVS [8] need to be
installed at user sites to realize their full benefits. These
factors often place undue burden on users, who are
primarily scientists, to spend significant efforts in setting
up and learning a new system. Furthermore, some of these
technologies are platform-specific and are not widely
supported on diverse user platforms. The proposed RICSA
system provides a user interface using Ajax Web technol-
ogies to offer a rich user environment and enables any user
with an Internet connection to use a Web browser to
monitor a remote ongoing computation process and also
steer the computation dynamics on the fly.

3 SYSTEM FRAMEWORK

As shown in Fig. 1, our system consists of five virtual
component nodes, Ajax client (Client), Ajax frontend (Web
server), central management (CM), data source (DS), and
computing service (CS), which are connected together over
a network to form a visualization-steering loop. In general,
a DS node either contains pregenerated data sets or a
simulator that runs on a host, a cluster, or a supercomputer,
where simulation data are continuously produced and
periodically cached on a local storage device, which serves
as a data source.

A computational steering is initiated at a Client node by
sending a request specifying the simulation program,
variable names, visualization method, and viewing para-
meters to the Ajax frontend, which forwards the request to
a designated CM. The CM then creates a connection and
forwards the request to a remote simulator to run the
preloaded simulation. Based on the global knowledge of
system resource distributions and simulation data set
properties, the CM strategically partitions the visualization
pipeline into groups and selects an appropriate set of CS
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nodes to execute the visualization modules. The results of

pipeline partitioning and network mapping are stored in a

visualization routing table and delivered sequentially over

the loop to establish a network routing path. The

visualization-steering loop comprises two channel seg-

ments: 1) control channel from the Ajax frontend to the

simulator or data source for computational steering and

visualization operations and 2) data channel from the

computation back to the frontend, as represented by the

solid and dotted lines in Fig. 1, respectively. The Ajax

frontend receives and saves images as fixed-size files,

which are transmitted to the user through the object

exchange mechanism of XMLHttpRequest.

4 TRANSPORT METHOD FOR CONTROL CHANNEL

We integrate the transport stabilization method described in

[26] into the proposed RICSA system to provide stable

channels for smooth control message delivery. In this

transport method, Rao et al. consider a general window-

based transport structure that utilizes UDP for application-

level transport. This model sends a congestion window

WcðtÞ of UDP datagrams periodically with an interval (sleep

time) TsðtÞ. The source rate rSðtÞ of a sender is primarily

determined by: rSðtÞ ¼ WcðtÞ
TsðtÞþTcðtÞ , where TcðtÞ is the time

spent on continuously sending a full congestion window of

UDP datagrams. The goodput rate, which is the data

receiving rate at the receiver ignoring the duplicates, is

denoted by gRðtÞ in response to the sending rate rSðtÞ.
The goal of transport stabilization is to adjust rSðtÞ to

ensure gRðtÞ ¼ g� in some sense, where g� is the specified

target goodput level. The rate control is based on the

Robbins-Monro stochastic approximation method [22]. At

time step tnþ1, the new sleep time is computed as:

Tsðtnþ1Þ ¼
1:0

1:0
TsðtnÞ �

a=Wc

n� � ðgðtnÞ � g�Þ
; ð1Þ

where gðtnÞ is the goodput measurement at time step tn at

the sender side. Coefficients a and � are carefully chosen so

that the source rate specified by 1 eventually converges to

the target rate. Under the Robbins-Monro conditions on the

coefficients, this protocol is analytically shown to asympto-

tically stabilize at g� under random losses [26] and the real

network implementation exhibits very robust stabilization

performance over a variety of network connections.

5 OPTIMIZING VISUALIZATION PIPELINE

5.1 Visualization Pipeline

Large volumes of simulation data generated in scientific
applications need to be appropriately retrieved and
mapped onto a 2D display device to be “visualized” by
human operators. This visualization process involves
several steps that form the so-called visualization pipeline
or visualization network [21]. For a small-scale standalone
application where an end user accesses a local data source,
the entire visualization pipeline may be executed on a single
computer. However, in large-scale distributed applications
with geographically distributed data sources and end users,
it is a significant challenge to support complex visualization
pipelines over wide-area networks with heterogeneous
computing nodes and transport links. The remote visualiza-
tion in next-generation scientific applications such as
Terascale Supernova Initiative (TSI) [1] is a typical example.
Note that a computing pipeline with only two modules
reduces to the traditional client/server mode. Fig. 2 shows a
high-level abstraction of a visualization and steering pipe-
line along with data and control flows.

The raw data in many scientific applications is stored in
multivariate format such as CDF, HDF, and NetCDF [9],
[10], [11]. The filtering module extracts the information of
interest from the raw data and performs necessary pre-
processing to improve processing efficiency and save
communication cost. The transformation module typically
uses a surface fitting technique such as isosurface extraction
to derive 3D geometries and the rendering module converts
the transformed geometric data to pixel-based images.
During a simulation run, an end user may steer the
computation and control the visualization that takes place
in various computing modules along the pipeline. Such
steering or control commands are delivered through the
stable channels described in Section 4.

5.2 Cost Models of Pipeline and Network
Components

We construct analytical cost models for pipeline and

network components to facilitate the formulation of the

objective function. The computational complexity of com-

puting module1 wi is denoted as a function fwið�Þ of the

incoming data size zi�1;i sent from its preceding module

wi�1, which determines the number of instructions needed

to complete the subtask defined in the module. The output
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Fig. 1. System architecture and components. Fig. 2. A general visualization steering pipeline: visualization modules,

data flow, and control flow.

1. In some contexts, computing modules are also referred to as stages or
subtasks.
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data of size zi;iþ1 is, in turn, sent to its succeeding module

wiþ1 for further processing. The processing capability of a

network node is a result of host factors such as processor

frequency, bus speed, memory size, storage performance,

and presence of coprocessors. For simplicity, we use a

normalized quantity pi to represent the overall computing

power of network node vi without specifying its details, i.e.,

the number instructions that can be executed in one unit of

time. The transport link or edge between network nodes vi
and vj is denoted by ei;j, which is characterized by

bandwidth (BW) bi;j and minimum link delay (MLD) di;j.

We estimate the computing time of module wi running on

network node vj to be Tcomputingðwi; vjÞ ¼
fwi ðzi�1;iÞ

pj
and the

transfer time of message size z over transport link ei;j to be

Ttransportðz; ei;jÞ ¼ z
bi;j
þ di;j.

5.3 Objective Function for Maximum Frame Rate

Due to the disparate nature of data sources and intrinsic

heterogeneity of network nodes, transport links, and

application computing tasks, deploying component mod-

ules on different sets of computer nodes can result in

substantial performance differences. The visualization pipe-

line mapping problem is to find an efficient mapping

scheme that maps the computing modules onto a set of

strategically selected nodes to maximize the frame rate for

applications where time series data sets are generated and

fed into a visualization pipeline to sustain a continuous and

smooth data flow.
We represent the transport network as a graph

G ¼ ðV ;EÞ; jV j ¼ n, where V denotes the set of network or

computer nodes and E the set of directed transport links or

edges. Note that the transport network may or may not be a

complete graph. A general computing pipeline consists of m

sequential modules w0; w1; . . . ; wm�1, where w0 is a data

source and wm�1 represents an end user. The objective of a

mapping scheme is to divide the pipeline into q groups of

modules denoted by g0; g1; . . . ; gq�1, and map them onto a

selected network path P of q nodes from source vs to

destination vd in the computer network, where

vs; vd 2 V ; q 2 ½1;m�, and path P consists of a sequence of

not necessarily distinct nodes vP ½0� ¼ vs; vP ½1�; . . . ; vP ½q�1� ¼ vd.
We wish to maximize the frame rate to produce the

smoothest data flow by identifying and minimizing the

bottleneck time (BT), i.e., the time incurred on a bottleneck

link or node, which is defined as:

TbottleneckðPath P of q nodesÞ

¼ max
Path P of q nodes
i¼0;1;:::;q�2

TcomputingðgiÞ;
TtransportðeP ½i�;P ½iþ1�Þ;
Tcomputingðgq�1Þ

0
B@

1
CA

¼ max
Path P of q nodes
i¼0;1;:::;q�2

�P ½i�
pP ½i�

max
j2gi;j�1

ðfwjðzj�1;jÞÞ;

�P ½i�;P ½iþ1� � zðgiÞ
bP ½i�;P ½iþ1�

þ dP ½i�;P ½iþ1�;

�P ½q�1�
pP ½q�1�

max
j2gq�1;j�1

ðfwjðzj�1;jÞÞ

0
BBBBBBB@

1
CCCCCCCA
;

ð2Þ

where �P ½i� is the number of modules assigned to node vP ½i�,
and �P ½i�;P ½iþ1� is the number of data sets transferred over link
eP ½i�;P ½iþ1� between nodes vP ½i� and vP ½iþ1�. We assume equal
share of node computing power and link bandwidth among
concurrent module executions and data transfers, respec-
tively. We use zðgiÞ to denote the output data size of group
gi, which is the same as that of the last module in the group.
We also assume that the first module w0 only transfers data
from the source node and the last module wm�1 only
performs certain computation without data transfer.

5.4 Transport Time Estimation

We present a linear regression model to estimate the
bandwidth of a virtual link or transport path using active
traffic measurement based on [30]. Due to complex traffic
distribution over wide-area networks and the nonlinear
nature of transport protocol dynamics (in particular, TCP),
the throughput achieved in actual message transfers is
typically different from the link or available bandwidths,
and typically contains a random component. We consider the
effective path bandwidth (EPB) as the throughput achieved by a
flow using a given transport module under certain cross-
traffic conditions and use the active measurement technique
to estimate the EPB and MLD of a given network path.

There are three main types of delays involved in the
message transmission over computer networks, namely,
link propagation delay dp imposed at the physical layer
level, equipment-associated delay dq mostly incurred by
processing and buffering at the hosts and routers, and
bandwidth-constrained delay dBW . The delay dq often
experiences a high level of randomness in the presence of
time-varying cross-traffic and host loads. Also, since the
transport protocol reacts to the competing traffic on the
links, the delay dBW may also exhibit randomness,
particularly over congested wide-area connections. The
cost model that measures the end-to-end delay in transmit-
ting a message of size z on a path P with l physical links is
defined as:

dðP; zÞ ¼ dBW ðP; zÞ þ
Xl
i¼1

dp;iðP Þ þ dq;iðP; zÞ
� �

¼ z

EPBðP Þ þMLDðP Þ:
ð3Þ

Based on (3), we can apply a linear regression method to
estimate EPB and MLD using a number of sample data sets
with various sizes.

5.5 Computing Module Performance Modeling

The time for executing visualization tasks depends on
various factors including available system resources, data
sizes, visualization methods, and user-specified parameters.
The dynamic and input-dependent feature of some factors
poses a great challenge on the performance estimation. For
example, the time for extracting isosurfaces from a data set is
closely related to the number of extracted triangles that
cannot be predicted before the user selects an isovalue. In
addition, the intrinsic feature of a visualization technique
also plays an important role. Thus, the performance estima-
tion for isosurface extraction could be very different from the
one for streamline generation. We design performance
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estimation methods using analytical models and statistical
measurements for commonly used visualization techniques:
isosurface extraction, ray casting, and streamline.

5.5.1 Isosurface Extraction

Traditionally, to speed up the search process, one typically
traverses an octree to identify data blocks containing
isosurfaces. In this case, the extraction is performed at the
block level. In general, the time to extract isosurfaces from a
data set is determined by the number of blocks containing
isosurfaces nblks, the number of cells in a block Sblk, and the
average time of extracting isosurfaces from a block tblk,
which depends on Sblk. We define the performance model
for isosurface extraction as:

textractionðnblks; SblkÞ ¼ nblks � tblkðSblkÞ: ð4Þ

In this model, nblks and Sblk depend directly on the data
partitioning method, which is usually known beforehand.
However, since tblk is also controlled by the isovalue
selected by the user at runtime, it is difficult to provide
an exact expression relating tblk to the other parameters. We
employ a statistical method to predict the isosurface
extraction time tblk using a set of testing data sets sampled
from various applications. We run the isosurface extraction
algorithm on these data sets divided into different block
sizes with a large number of possible isovalues. For each of
15 cases, including the one with no isosurface, we measure
the frequency of the related cells found inside a block as
well as the time spent on each case, TCaseðiÞ, where
i 2 ½0; 14�. The case probability PCaseðiÞ is defined as the
averaged occurrence for each case. At runtime, we estimate
the average time spent on a block as:

tblkðSblkÞ ¼ Sblk �
X14

i¼0

TCaseðiÞ � PCaseðiÞð Þ; ð5Þ

which is constant for blocks with the same Sblk.
For isosurface extraction, we also need to estimate the

rendering cost that is determined by the number of
extracted triangles n4, and the number of triangles the
graphics card can render per second. Since n4 can be
computed from Sblk; PCaseðiÞ, and the number of triangles
n4ðiÞ extracted from a cell with case i, the performance
model for rendering isosurfaces is defined as:

trender ¼ nblks � Sblk �
X14

i¼0

n4ðiÞ � PCaseðiÞð Þ: ð6Þ

We tested this cost model using 64 cubed and 256 cubed
volume blocks of data sets from real applications in various
medical, engineering, and science domains, and consis-
tently achieved a high prediction accuracy with a relative
prediction error of less than 5.0 percent in actual runs.

5.5.2 Ray Casting

Similar to isosurface extraction, without loss of generality,
we assume ray casting is also performed at the block level.
The performance estimation for ray casting is much harder
than that for isosurface extraction because of unlimited
possibilities of underlying transfer functions. The time
spent on casting rays through a block is controlled by the

number of rays nrays, the average number of samples per
ray nsamples, and the computing time spent on each sample
tsample. Therefore, our performance model for ray casting is
defined as:

traycasting ¼ nblocks � nrays � nsamples � tsample; ð7Þ

where nblocks is the number of nonempty blocks. Because of
the unpredictable transfer function, we simplify our estima-
tion by not considering early ray termination inside a block,
aiming to provide the quantitative measurement of the
computing power supported by available computing facil-
ities. Thus, nrays and nsamples only depend on the viewing
vector and are constant for a given view if orthographic
projection is used. tsample can be considered as a constant and
can be easily computed by running ray casting algorithm on a
test data set for each machine. Such estimation would be
more accurate if each nonempty block is semitransparent. We
conducted ray casting experiments on a PC equipped with
2.4 GHz CPU and 2 GBytes memory using a data set with
512 nonempty blocks of 643 voxels, and observed that the
time to render each block is 0.387 seconds on average with a
relative standard deviation of 4.7 percent.

5.5.3 Streamline

Compared with isosurface extraction and ray casting, the
performance estimation for the streamline algorithm is
much simpler. The time needed for generating streamlines
is dominated by the number of seed points nseeds, and the
number of advection steps for each streamline nsteps. Hence,
its performance model can be defined as:

tstreamline ¼ nseeds � nsteps � Tadvection; ð8Þ

where Tadvection is the time required to perform one
advection, which is computed by running the streamline
algorithm on a test data set and recording the time spent for
each advection. For each computing machine, we can find
an average Tadvection that will be used for runtime perfor-
mance estimation.

6 PROBLEM CLASSIFICATION AND COMPLEXITY

ANALYSIS

For the mapping objective of MFR, we consider three
different types of mapping constraints: 1) no node reuse or
share (MFR-NNRS), i.e., a node on the selected path P

executes exactly one module; 2) contiguous node reuse and
share (MFR-CNRS), i.e., two or more contiguous modules in
the pipeline are allowed to run on the same node (the
selected path P contains self-loops); and 3) arbitrary node
reuse and share (MFR-ANRS), i.e., two or more modules,
either contiguous or noncontiguous in the pipeline, are
allowed to run on the same node (the selected path P

contains loops). In MFR-NNRS, any node in the network
can be used at most once, which requires selecting the same
number of nodes for one-to-one and onto module mapping.
Node reuse is allowed in both MFR-CNRS and MFR-ANRS.
However, in the former, the modules mapped onto the
same node must be contiguous along the pipeline, which is
not required in the latter. These two problems appear to be
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similar to the Maximum n-hop Shortest Path problem, but
are proved to be NP-complete when resources are shared.

The MFR of a computing pipeline is limited by the
bottleneck unit, i.e., the slowest data transfer or module
execution along the entire pipeline. In MFR-NNRS, we
attempt to find the widest path with exact n nodes to map
n modules in the pipeline on a one-to-one basis. Here,
“widest” refers to the maximum bottleneck among all
feasible paths. The MFR-NNRS problem can be simplified
to the exact n-hop widest path problem by assuming
identical modules, which is equivalent to the Exact n-hop
Shortest Path problem (ENSP) in complexity. The reduction
from the Hamiltonian Path problem, which is known to be
NP-complete, to ENSP is trivial.

6.1 NP-Completeness Proof of MFR-CNRS and
MFR-ANRS

We define MFR-CNRS as a decision problem as follows:

Definition 1. Given a linear computing pipeline of m modules, a

directed weighted transport network G and a bound T , does

there exist a mapping of the pipeline to the network with

contiguous node reuse such that the BT does not exceed T?

Theorem 1. MFR-CNRS is NP-complete.

Proof. We use a reduction from DISJOINT-CONNECTING-
PATH (DCP) [20], which has been shown to be NP-
complete even when restricting to two paths in the case of
directed graphs (2DCP) [19]. The problem clearly belongs
to NP: given a division of the pipeline into q groups and a
path P of q nodes, we can compute the BT in polynomial
time and check if the bound T is satisfied. We prove its
NP-hardness by showing that 2DCP �p MFR-CNRS.

Consider an arbitrary instance I 1 of 2DCP, i.e., a graph
G ¼ ðV ;EÞ and two disjoint vertex pairs ðx1; y1Þ;
ðx2; y2Þ 2 V 2. We ask whether G contains two mutually
vertex-disjoint paths, one going from x1 to y1, and the
other going from x2 to y2. The number of nodes in the
graph is n ¼ jV j � 4. We can construct the following
instance I 2 of MFR-CNRS as shown in Fig. 3. The
pipeline consists of m ¼ 2nþ 1 modules, and the
computational complexity of each module wi is fwiðzÞ ¼
1 for 1 � i � 2n; i 6¼ n and fwnðzÞ ¼ n2. In other words,
only module wn has a much higher complexity than the
other modules. The network consists of jV j þ 1 nodes and
jEj þ 2 links: starting from graph G, we add a new node t
which is connected to G with an incoming link from y1 to
t and an outgoing link from t to x2. For each node vj 2 V ,
the processing capability is set to pj ¼ 1, except for node t,

whose processing power is n2 much higher than others.
Link bandwidths are set to be very high so that transport
time between nodes is ignored compared to computing
time. The source and destination nodes vs and vd are set to
be x1 and y2, respectively. We ask whether we can achieve
a BT of TMFR ¼ 1. Obviously, this instance transformation
can be done in polynomial time.

We show that given a solution to I 1, we can find a
solution to I 2 of MFR-CNRS. Let qi be the length of the
path from xi to yi, for i ¼ 1; 2. We have qi � n for both
paths and paths are disjoint. We map the first q1 modules
with no node reuse on q1 nodes of the path from x1 to y1,
and thus, w0 is mapped on the source node x1 ¼ vs. The
rest n� q1 modules are also mapped on y1 and only
contiguous modules are mapped on this node. Each of
these n modules incurs a delay of 1. We map module wn
with a complexity of n2 to the fast node t, which incurs a
delay of n2=n2 ¼ 1. Similarly, the last n modules are
mapped on the path from x2 to y2: the next n� q2

contiguous modules are mapped on x2, and the remain-
ing q2 modules are mapped on the path with no node
reuse. Each of these n modules also incurs a delay of 1.
This mapping scheme only involves contiguous node
reuse according to the solution to I 1: the two paths are
vertex-disjoint, hence no node is reused for noncontig-
uous modules. Moreover, since the delays on all modules
are identical, the BT of the entire pipeline is 1 � TMFR,
thus producing a valid solution to I 2.

Reciprocally, if I2 has a solution, we show that I 1 also
has a solution. We prove that the mapping scheme of I 2

has to be of a similar form as the one described above,
and thus, there exist disjoint paths x1 ! y1 and x2 ! y2.
This property is due to the fact that node t must be used
in the mapping. Indeed, if node t is not used to process
module wn, this module will incur a delay of n2 much
larger than the bottleneck cost TMFR ¼ 1. Since the BT of
I 2 is no larger than TMFR ¼ 1, module wn must be
mapped on node t in the solution to I2. Let ½n1; n2�
denote the range of modules that are assigned to node t
in the mapping, where n1 � n � n2. Since the only links
connecting wn to the network are y1 ! t and t! x2, the
mapping scheme of I 2 must also involve nodes x2 and
y1. Moreover, since w0 is mapped on x1 and w2n is
mapped on y2, the source and destination nodes x1 and
y2 are also used. Therefore, the mapping scheme is as
follows: modules w0 to wn1�1 are mapped to a path of
nodes between x1 and y1, modules wn1

to wn2
are mapped

on node t, and modules wn2þ1 to w2n are mapped to a
path of nodes between x2 and y2. Since only contiguous
modules along the pipeline can be deployed on the same
node in this mapping, nodes in both paths x1 ! y1 and
x2 ! y2 are distinct, and they are connected by edges in
G by construction of I 2. Thus, we found disjoint paths
and a solution to I 1. Proof ends. tu

The NP-completeness proof for MFR-ANRS is based on
the Widest path with Linear Capacity Constraints (WLCC)
[31] problem. An LCC-graph is a triplet ðG ¼ ðV ;EÞ; C; bÞ,
where the capacity of each link e 2 E is a variable xe, and
ðC; bÞ represents a set of m linear capacity constraints Cx �
b; C is a 0-1 coefficient matrix of size m� jEj; x is an jEj � 1
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vector of link capacity variables, and b 2 Rm is a capacity
vector. Each link e 2 E has a capacity cðeÞ � 0. Given an LCC-
graph ðG;C; bÞ, the width!ðP Þ of a pathP ¼ ðe1; e2; � � � ; ekÞ 	
G is defined as the bottleneck capacity xBN subject to
xej ¼ 0; 8ej 62 P;Cx � b, a n d xe1

¼ xe2
¼ � � � ¼ xek ¼ xBN .

We define WLCC as a decision problem: Given an arbitrary
instance ðG ¼ ðV ;EÞ; C; bÞ of WLCC, two nodes vs; vd 2 V ,
and a positive integerK �Maxfbig, does there exist a pathP
from vs to vd whose width, i.e., bottleneck capacity xBN , is no
less than K? This problem was shown to be NP-complete in
[31]. Similarly, we define MFR-ANRS as a decision problem:

Definition 2. Given a linear computing pipeline of m modules, a
transport networkG, and a boundB, does there exist a mapping
of the pipeline to the network with arbitrary node reuse such that
the frame rate, i.e., the inverse of the BT, is no less than B?

Theorem 2. MFR-ANRS is NP-complete.

Proof. For a given solution to an instance of MFR-ANRS, we
can go through the entire path to calculate the frame rate
for each link and node and check if it satisfies the bound.
This evaluation process can be done in polynomial time,
which means MFR�ANRS 2 NP. We prove its NP-
hardness by reducing WLCC problem to it.

Given an arbitrary instance I 1 in WLCC problem, in
which there are several LCCs among the links, as shown
in Fig. 4, we can transform it into an instance I2 of the
MFR-ANRS problem, i.e., I 1 2WLCC ) I 2 ¼ F ðI1Þ 2
MFR-ANRS, where F ð�Þ is a polynomial-time transfor-
mation function. We first construct a pipeline that
consists of jV j identical modules w, whose computational
complexity is denoted as a function fwð�Þ of the same
input data size z. We then make a copy of the entire
topology of G and denote it as graph G0 ¼ ðV 0; E0Þ, where
V 0 ¼ V and E0 ¼ E. Any vertex v 2 V in G not on a
constrained link and any link e 2 E in G not in
constraints ðC; bÞ remain unchanged in V 0 and E0,
respectively, including the capacity of each link. Here,
we consider three types of LCCs:

. Case 1 of adjacent LCC: If there are � constrained
links within one LCC that are all adjacent, their
corresponding vertices in V 0 are bundled together
and replaced with a virtual node vvir, which
contains the same number of self-loops as that of
contiguously adjacent constrained links defined
in the LCC. The processing power p of the virtual
node is set to fwðzÞ � �, where � is the LCC
capacity. For example, in Fig. 4, the links e1;2; e2;3,
and e3;4 have an LCC xe1;2

þ xe2;3
þ xe3;4

� �1

among them, so we have � ¼ 3 and � ¼ �1;

. Case 2 of nonadjacent LCC: If there are �
constrained links within one LCC that are all
nonadjacent, their corresponding vertices in V 0

are bundled together and replaced with a virtual
node vvir. The processing power p of the virtual
node is again set to fwðzÞ � �, where � is the LCC
capacity. For example, in Fig. 4, the links eiþ1;iþ2

and ejþ2;jþ3 have an LCC xeiþ1;iþ2
þ xejþ2;jþ3

� �2

between them, so we have � ¼ 2 and � ¼ �2.
. Case 3 of mixed LCC: This is a combination of the

first two cases. The corresponding vertices in V 0

of all adjacent and nonadjacent constrained links
within one LCC are bundled together and
replaced with a virtual node vvir, whose proper-
ties (self-loops and processing power) are treated
the same way as in the first two cases.

Furthermore, the processing power of all the other nodes is
set to infinity. The newly constructed graph G0 with one
adjacent LCC and one nonadjacent LCC is shown in Fig. 5.
Finally, we select a bound B ¼ K. Obviously, this
transformation can be done in polynomial time. The
question for MFR-ANRS is: does there exist a mapping
path P 0 from v0s to v0d in G0 that provides frame rate no less
thanB?

We show that given a solution to WLCC problem, we
can find a solution to the MFR-ANRS problem. Suppose
that there exists a path P from vs to vd in G of width no
less than K. We first identify a path P 0 in G0

corresponding to path P in G, and then sequentially
map the modules in the pipeline onto the nodes along
the path P 0 from v0s to v0d, with the first module mapped
onto source node v0s and the last module mapped onto
destination node v0d. Between v0s and v0d, we sequentially
map each module onto a regular node along the path,
and when a virtual node is encountered, we have three
different mapping schemes:

. Case 1 of adjacent LCC: If this virtual node is
converted from � adjacent constrained links,
among which �0 (�0 � �) links are on path P , we
map �0 contiguous modules to it;

. Case 2 of nonadjacent LCC: If this virtual node is
converted from � nonadjacent constrained links,
among which �0 (�0 � �) links are on path P , we
map one module to it every time when the path
passes through it for total �0 times;

. Case 3 of mixed LCC: If this virtual node is
converted from both adjacent and nonadjacent
constrained links, we map modules to it accord-
ing to a combination of the mapping strategies for
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virtual nodes converted from either a single
adjacent LCC or a single nonadjacent LCC as
specified in the first two cases.

Any remaining contiguous modules are mapped onto the

nonvirtual destination node v0d. If the destination node v0d
itself is a virtual node in G0, we can create a special node

with infinite processing power and connect the destina-

tion node v0d to it with infinite bandwidth on the link. This

special node is then considered as the new destination

node to run the last module and all remaining unmapped

modules. We consider the following four cases:

. In case 1, where the maximum capacity of path P
is not on any LCC link, the frame rate in G0 is
equal to the corresponding maximum capacity in
G. Therefore, path P 0 from v0s to v0d in G0 provides
frame rate that is no less than K ¼ B;

. In case 2, where the maximum capacity of pathP is

on one of the adjacent LCC links, we calculate the

frame rate on the virtual node inG0 as: 1=ðfwðzÞ=p�0Þ.
After plugging in p ¼ fwðzÞ � �, the frame rate

becomes: 1=ðfwðzÞ=fwðzÞ���0 Þ ¼
�
�0 . In WLCC problem,

the bottleneck bandwidth xBN of the widest pathP

has the following inequality:K � xBN � �
�0 since all

constrained links share the capacity �. Hence, the

corresponding mapping path P 0 from v0s to v0d inG0

provides frame rate at �
�0 � K ¼ B;

. In case 3, where the maximum capacity of path P
is on one of the nonadjacent LCC links, we
calculate the frame rate on the virtual node in G0

in the same way as we do in case 2, except for
replacing �0 with �0;

. In case 4, where the maximum capacity of path P
is on one of the mixed LCC links, we calculate the
frame rate on the virtual node in G0 in the same
way as we do in case 2, except for replacing �0

with �0 þ �0.
Therefore, we conclude that the mapping path P 0 is the

solution to the instance I2 of the MFR-ANRS problem.
Now we show that if there is a solution to the MFR-

ANRS problem, we can also find a solution to the WLCC
problem in polynomial time. Given a path P 0 from v0s to
v0d in G0 with frame rate � B, we first identify a
corresponding path P in G. We also consider the
following four cases:

. In case 1, where the frame rate is incurred on a
network link in G0, the corresponding network
link in G has the bottleneck bandwidth of the
widest path in WLCC problem;

. In case 2, where a virtual node converted from an

adjacent LCC incurs the frame rate as:

1=ðfwðzÞ=p�0Þ ¼ 1=ðfwðzÞ=fwðzÞ���0 Þ ¼
�
�0 � B, the corre-

sponding path P in G has the bottleneck

bandwidth xBN ¼ �
�0 � B ¼ K of the widest path

in WLCC problem;
. In cases 3 and 4, the solution derivation steps are

very similar to those in case 2, except for
replacing �0 with �0 and �0 þ �0, respectively.

Therefore, we conclude that path P in G from vs to vd is
the solution to the instance I1 of the WLCC problem.
This completes our proof. tu

7 ELPC HEURISTIC ALGORITHMS

We propose a set of solutions, Efficient Linear Pipeline
Configuration (ELPC), in which a heuristic algorithm is
designed for each mapping problem for MFR. We will also
briefly present two other mapping algorithms used for
performance comparison.

7.1 Dynamic Programming-Based Solutions

The MFR is achieved when the path BT is minimized. Let
Tj�1ðviÞ denote the minimum BT with the first j modules
mapped to a path from source node vs to node vi in an
arbitrary computer network. We have the following recur-
sion based on DP leading to the final solution Tm�1ðvdÞ:

Tj�1ðviÞ
j¼2 to m;vi2V

¼ min

max
Tj�2ðviÞ;

�ifwj�1
ðzj�2;j�1Þ
pi

0
@

1
A;

min
vu2adjðviÞ

max

Tj�2ðvuÞ;
�ifwj�1

ðzj�2;j�1Þ
pi

;

�u;izj�2;j�1

bu;i
þ du;i

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

ð9Þ

with the base condition computed as:

T 1ðviÞ
vi2V ; and vi 6¼vs

¼

maxðfw1
ðz0;1Þ=pi; z0;1=bs;i þ ds;iÞ ; 8es;i 2 E;

1; otherwise;

� ð10Þ

on the second column in the 2D table and T 0ðvsÞ ¼ 0. Note
that �i denotes the number of modules assigned to node vi
and �u;i the number of data sets transferred over link
between nodes vu and vi. In MFR-NNRS, � ¼ 1 and � ¼ 1.

The recursive DP process fills out a 2D table, as shown in
Fig. 6. Every cell Tj�1ðviÞ in the table represents a partial
mapping solution that maps the first j modules to a path
between source vs and node vi. During the mapping
process, we consider two subcases at each recursive step,
the minimum of which is chosen as the minimum BT to fill
in a new cell Tj�1ðviÞ: 1) In subcase 1, we run the new
module on the same node running the last module in the
previous mapping subproblem Tj�2ðviÞ. In other words, the
last two or more modules are mapped to the same node vi.
Therefore, we only need to compare the computing time of
the last module on node vi with the previous BT and use the
larger as the current BT, which is represented by a direct
incident link from its left neighbor cell in the 2D table. Since
the resource is shared by multiple modules assigned to the
same node, adding the new module to the current node vi
may change the optimality of the solution Tj�2ðviÞ to the
previous mapping subproblem, resulting in a nonoptimal
final solution and 2) In subcase 2, the new module is
mapped to node vi, and the last node vu in a previous
mapping subproblem Tj�2ðvuÞ is one of the neighbor nodes
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of node vi, which is represented by an incident link from a
neighbor cell on the left column to node vi. In Fig. 6, a set of
neighbor nodes adjðviÞ of node vi are enclosed in a cloudy
region in the previous column. We calculate the BT for each
mapping of an incident link of node vi and choose the
minimal one, which is further compared with the one
calculated in subcase 1. The minimum of these two subcases
is selected as the minimum BT for the partial computing
pipeline mapping to a path between node vs and node vi.
The complexity of this algorithm is Oðm � jEjÞ, where m
denotes the number of modules in the linear computing
pipeline and jEj is the number of edges in the network.

The ELPC algorithm for MFR-ANRS exactly follows the
DP procedure defined in (9) and (10), and its pseudocode is
shown in Algorithm 1. The algorithms for MFR-CNRS and
MFR-NNRS are similar with slight modifications. In MFR-
CNRS, we simply skip a cell if its corresponding node has
been used in the path selection so far to ensure a loop-free
path, while in MFR-NNRS, each cell is only calculated from
its adjacent nodes and is skipped if its corresponding node
has been used. We would like to point out that these
solutions are heuristic in nature because when a node has
been selected by all its neighbor nodes at previous
optimization steps, we may miss an optimal solution if this
node is the only one leading to the destination node or
obtain a suboptimal solution if there are multiple nodes
leading to the destination node.

Algorithm 1. ELPC. Input: A linear computing pipeline

with m modules, a heterogenous network G ¼ ðV ;EÞ,
where jV j ¼ n, and a pair of nodes (vs,vd) in V representing

the source and destination, respectively.

Output: The MFR of the pipeline mapped onto a selected

network path P from vs to vd.

Initialize the first column of 2D table: T½i�½0� ¼ NULL;
i ¼ 0; 1; . . . ; n� 1;

for all nodes vi from i ¼ 0 to n� 1 with only two modules

w0 and w1 do

if es;i 2 E then

Calculate the BT for cell T½i�½1� in the 2nd column as the

base condition;

else

T½i�½1� = +1;
end if

end for

for all modules wj from j ¼ 2 to m� 1 do

for all nodes vi from i ¼ 0 to n� 1 do

if module wj�1 is mapped to node vi then

Map module wj to node vi, calculate BT1;

else

for all neighbor nodes adjðviÞ directly connected to
vi do

Map module wj to node vi, calculate BT ðadjðviÞÞ;
end for

end if

Choose the minimum BT among all neighbor nodes of

vi: BT2 ¼ minðBT ðadjðviÞÞÞ;
T½i�½j� ¼ minðBT1; BT2Þ;

end for

end for

return 1=T½n�1�½m�1� as the MFR.

7.2 Algorithms for Comparison

7.2.1 Streamline Algorithm

Agarwalla et al. proposed a grid scheduling algorithm,
Streamline, for graph dataflow scheduling in a network with
n resources and n� n communication edges. The Stream-
line algorithm considers application requirements in terms
of per-stage computation and communication needs,
application constraints on colocation of stages (node reuse),
and availability of computation and communication re-
sources. Two parameters, rank and blevel, are used to
quantitate these features: rank calculates the average
computation and communication cost of a stage, and blevel
estimates the overall remaining execution time of a data
item after being processed by a stage. Based on these two
parameters, the stages are sorted in a decreasing order of
resource needs and the nodes are sorted in a decreasing
order of resource availability. This scheduling heuristic
works as a global greedy algorithm that expects to
maximize the throughput of an application by assigning
the best resources to the most needy stages in terms of
computation and communication requirements at each step.
The complexity of this algorithm is Oðm � n2Þ, where m is
the number of stages or modules in the dataflow graph and
n is the number of resources or nodes in the network.

7.2.2 Greedy Algorithm

A greedy algorithm iteratively obtains the greatest im-
mediate gain based on certain local optimality criteria at
each step, which may or may not lead to the global
optimum. We design a heuristic mapping scheme based on
a greedy approach that calculates the pipeline bottleneck for
the mapping of a new module onto the current node when
node reuse is allowed on one of its neighbor nodes and
chooses the maximum one. This greedy algorithm makes a
module mapping decision at each step only based on
current information without considering the effect of this
local decision on the mapping performance in later steps.
The complexity of this algorithm is Oðm � jEjÞ, where m
denotes the number of modules in the linear computing
pipeline and jEj is the number of links in the network.
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8 SIMULATION-BASED PERFORMANCE EVALUATION

8.1 Simulation Settings

The proposed ELPC algorithms are implemented in C++
and run on a PC equipped with a 3.0 GHz CPU and
2 Gbytes memory. For performance comparison purposes,
we implement the other two algorithms, namely, Streamline
and Greedy, in C++ on the same computing platform. We
conduct an extensive set of mapping experiments for MFR
using a wide variety of simulated application pipelines and
computing networks. We generate these simulation data
sets by randomly varying the following pipeline and
network attributes within a suitably selected range of
values: 1) the number of modules as well as the complexity
and input/output data sizes of each module; 2) the number
of nodes as well as the processing power of each node; and
3) the number of links as well as the link bandwidth and
minimum link delay of each link.

For each mapping problem, we designate a pair of source
and destination nodes to run the first module and the last
module of the pipeline. This is based on the consideration
that the system knows where the raw data is stored and
where an end user is located before optimizing the pipeline
configuration over an existing network.

8.2 Performance Comparison

With the simulated application pipelines and computing
networks, we perform an extensive set of simulations of
pipeline mapping with different constraints using ELPC,
Streamline, and Greedy, respectively. The measured execu-
tion time of these algorithms varies from milliseconds for
small-scale problems to seconds for large-scale ones. A set
of typical MFR performance measurements is tabulated in
Table 1 for comparison, which are collected in 20 cases
using different problem sizes from small to large specified
in the second column. The relative performance differences
of these three algorithms observed in other cases are
qualitatively similar.

For a visual comparison, we plot the MFR performance
measurements produced by these three algorithms under

different constraints with three sets of samples in Figs. 7, 8,
and 9, respectively. We observe that ELPC exhibits compar-
able or superior performances in maximizing frame rate over
the other two algorithms in all the cases that we studied. We
do not compare with Streamline in the case of contiguous
node reuse because Streamline does not allocate the
resources by the stage’s (module’s) sequence number so that
the previous node is unknown when the current one is being
allocated. The MFR, i.e., the reciprocal of the BT in a selected
path, is not particularly related to the path length, and hence,
these MFR performance curves lack an obvious increasing or
decreasing trend in response to varying problem sizes.

9 IMPLEMENTATION AND EXPERIMENTAL RESULTS

We implement a proof-of-concept system for RICSA in Java,
C++, and MPI Fortran on Linux using Google Web Toolkit
(GWT) [12] for the Ajax Web developments. In this section,
we describe the implementation details and present experi-
mental results by several network deployments.

9.1 Graphical User Interface

Fig. 10 displays a screenshot of the graphical user interface
(GUI) of RICSA developed using GWT. The sod shock tube
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simulation, a classical hydrodynamics problem, is running
on a Linux cluster of eight nodes for parallel computation
and visualization. Each newly generated simulation data set
traverses through a linear visualization pipeline over the
wide-area network using various scientific visualization
techniques to achieve MFR with available distributed
computing resources. By interacting with the Web compo-
nents in a browser, a user can choose from a list of serial or

parallel simulation programs to run, specify computation
control parameters, and select visualization parameters
such as the variable of interest, octree subset region,
visualization technique, and viewing parameters including
zoom factor and rotation angle. Direct mouse interactions
with the image will also trigger the rerendering of images.
While the simulation process is running, the user can
dynamically steer simulation/visualization parameters
based on visual feedback. When a new image arrives at
the client side, only the image component in the user
interface will be updated and the rest of the components
remain unchanged. Such a data-driven model from Ajax
technology makes our Web application more responsive
compared with traditional Web technologies. In addition to
real-time steering, RICSA can also support remote visuali-
zation for archival data sets.

9.2 Universal Steering Framework for Various
Simulation Programs

RICSA is designed as a universal framework to support
various simulation programs written in different program-
ming languages. The RICSA system can be easily modified
to integrate any given simulation program. We achieve code
reuse and system modularity by developing several generic
C++ visualization and network Application Programming
Interface (API) functions and packaging them in a shared
library to be used by any simulation program. These API
function calls are inserted at certain points in simulation
code (typically developed in a non-C++ programming
language in science fields) to set up socket communications,
transfer data sets, and intercept steering commands from
the client. Such system design and structure greatly
improve code portability between different implementation
platforms. Fig. 11 illustrates how six essential RICSA API
functions are called at the appropriate locations in the
computational loops of Virginia Hydrodynamics (VH1)
simulation code written in Fortran [13].
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Fig. 8. MFR-CNRS comparison.

Fig. 9. MFR-ANRS comparison.

Fig. 10. A screenshot of the RICSA GUI.
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9.3 Remote Visualization Experimental Results

We wish to demonstrate that the pipeline partition and
mapping scheme chosen by our system outperforms all
other alternatives in terms of frame rate in real scenarios. In
the experiments, an MPI-based simulation of the Stellar
Wind problem in astrophysics is visualized using ray
casting technique on the same Linux cluster with eight
nodes. We set up a LAN-WAN testbed consisting of five
nodes: three PC workstations (WS1-3), one Linux cluster
(Athena) located at Southern Illinois University, Carbondale
(SIUC), and one laptop located in Los Angeles (LA) to
compare the performance of different network loops, as

shown in Fig. 12. For all network loops, the simulation node
acts as the DS and the Web server is deployed on the Athena
Linux cluster. The CS and CM nodes are mapped onto two
Linux workstations WS1 and WS2. The Web client nodes are
either selected to be the laptop in LA or the workstation
WS3 at SIUC. In Fig. 12, we collect experimental results by
running the system on three different pipeline mapping
loops for the same hydrodynamics problem and visualiza-
tion technique: 1) Loop 1 maps CM, DS, and CS nodes to
Athena and client to WS3; 2) Loop 2 maps CM and CS to
WS1 and client to WS3; and 3) Loop 3 maps CM to WS1, CS
to WS2, and client to WS3. These three experiments are
repeated with Loops 4, 5, and 6, respectively, using the
client deployed in LA. These six node deployment schemes
are tabulated in Table 2. We measure and plot the frame
rates in unit of frames per second (fps) achieved at the Web
clients by all six pipeline loops in Fig. 13. We observe that
Loops 2 and 5, selected by ELPC, achieved the highest frame
rate in each set of experiments.

Our experiments further illustrate that different pipeline
mapping schemes will lead to considerably different stream-
ing performance. Such performance disparities will become
more evident if applications are distributed across WAN
with heterogeneous computing resources and time-varying
network conditions. Thus, dynamically choosing an efficient
network configuration is critical to achieving smooth data
flow with satisfactory network performance. It is also
interesting to note that different clients did not cause
noticeable difference on the frame rate, which indicates that
the bottleneck is not on the transport link from the Web server
to the client. However, if we conduct remote visualization
operations for a single archived data set, a remote Web client
will incur longer end-to-end delay due to the much longer
image transport time. We also observe that Loop 2 utilized
one extra computing node and two extra transport links than
Loop 1 but produced a higher frame rate. This is due to the
fact that the bottleneck of Loop 1 is on the computation
modules mapped to the heavily loaded Athena and the
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Fig. 11. Visualization and network API function calls are inserted into the

Virginia Hydrodynamics simulation program.

Fig. 12. Six network loops with different nodes.

Fig. 13. The frame rates achieved with different network loops.

TABLE 2
Six Node Deployment Schemes in the Experiments
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utilization of WS2 in Loop 2 is able to share the computing
load with lower BT despite two extra data transport links.

10 CONCLUSION AND FUTURE WORK

The objective of the proposed RICSA system is to visualize,
monitor, and steer computations over wide-area networks to
support large-scale scientific applications. We constructed
mathematical models for mapping a visualization pipeline to
networks, and classified the pipeline mapping problems for
MFR into three classes. We proved the NP-completeness of
these problems and proposed a DP-based approach to
compute an efficient visualization pipeline configuration
that maximizes the frame rate of the system. The perfor-
mance of the proposed solutions was evaluated using
simulation results in comparison with existing algorithms
and was also verified using experimental results collected on
a prototype implementation deployed over the Internet.

The proposed system has been extensively tested and
used by teams of geographically distributed scientists in
various Internet environments. Through this work with
focus on both practical and theoretical aspects, we learned
that implementing a practical computational steering system
with a set of fully working functionalities for real distributed
applications requires significantly greater efforts than for-
mulating the underlying problems and designing comput-
ing solutions in a theoretical framework. In some cases, the
efficiency of the implementation is just as important as that
of the algorithms. Special caution also needs to be taken
when the system is deployed in network environments with
restrictive firewall settings that only allow unidirectional
communication. The use of newly emerged Web develop-
ment techniques such as Ajax greatly improves the friendli-
ness of the system and extends the usability to end users who
do not own well-equipped end hosts.

It is of our future interest to study various formulations of
this class of optimization problems from the viewpoint of
computational criteria and practical implementations. We
plan to integrate RICSA with large-scale simulation programs
from different disciplines such as biology, chemistry, and
physics. In addition to the Internet, we plan to deploy the
system over dedicated networks, such as DOE UltraScience
Net [27], for experimental testing especially for large data
sets. We plan to incorporate new transport methods that can
overcome the limitations of default TCP or UDP in terms of
throughput, stability, and dynamics in our remote visualiza-
tion and steering system at a later stage.
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